Final Exam (December 12)

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do BOTH of the following.

R.1. Let V be the subset of \mathbf{C}^{∞} (see Useful Information below) defined by

$$
V=\left\{\left(a_{1}, a_{2}, a_{3}, \cdots\right) \in \mathbf{C}^{\infty} \left\lvert\, \begin{array}{r}
a_{1}, a_{2} \in \mathbf{C} \\
a_{k}=a_{k-1}+6 a_{k-2},
\end{array} \quad k \geq 3 .\right.\right\}
$$

Prove that V is a subspace of \mathbf{C}^{∞}.
R.2. Use the method of Mathematical Induction to prove the following property of inner products is true for every positive integer n.

$$
\text { If } \vec{x}_{1}, \cdots, \vec{x}_{n}, \vec{y} \in \mathbf{C}^{m}, \text { then }\left\langle\sum_{k=1}^{n} \vec{x}_{k}, \vec{y}\right\rangle=\sum_{k=1}^{n}\left\langle\vec{x}_{k}, \vec{y}\right\rangle \text {. }
$$

Do TWO (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] A certain 6×6 matrix C can be written as $C=A B$ where A is 6×4 and B is 4×6. Explain how you know that $\operatorname{det}(C)=0$.
M.2. [15 points] Prove Theorem FTMR, Fundamental Theorem of Matrix Representation:

1. Suppose that $T: U \rightarrow V$ is a linear transformation, $B=\left\{\vec{u}_{1}, \cdots, \vec{u}_{n}\right\}$ is a basis for $U, C=\left\{\vec{v}_{1}, \cdots, \vec{v}_{m}\right\}$ is a basis for V and $M_{B, C}^{T}$ is the matrix representation of T relative to B and C. Then, for any $\vec{u} \in U$, $\rho_{C}(T(u))=M_{B, C}^{T}\left(\rho_{B}(\vec{u})\right)$
M.3. [15 points] Prove: If A is diagonalizable, then A^{T} is similar to A.
M.4. [15 points] ProveTheorem CLTLT, Composition of Linear Transformations is a Linear Transformation using the definition of linear transformation.
2. Suppose that $T: U \longmapsto V$ and $S: V \longmapsto W$ are linear transformations. Then $(S \circ T): U \longmapsto W$ is a linear transformation.

Do any THREE (3) of these "Other" problems

T.1. [5, 10 points] Suppose that $T: V \longrightarrow V$ is a linear transformation. Prove that $(T \circ T)(\vec{v})=\overrightarrow{0}$ for every $\vec{v} \in V$ if and only if $R(T) \subseteq K(T)$ (the range of is a subset of the kernel of T).
T.2. [15 points] Determine if $T: P_{2} \rightarrow P_{2}$ defined by $T(f(x))=f(x+1)$ is an isomorphism. You may assume T has already been shown to be a linear transformation.
T.3. [15 points] We say B is a square root of A if A and B are both square and $B^{2}=A$.Clearly, the diagonal $\operatorname{matrix} D=\left[\begin{array}{cccc}d_{11} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n n}\end{array}\right]$ has $\left[\begin{array}{cclc}\left(d_{11}\right)^{1 / 2} & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \left(d_{n n}\right)^{1 / 2}\end{array}\right]$ as a square root.

1. Prove that if A is a diagonalizable matrix, then A has a square root.
T.4. [15 points] Given $A \in M_{m, n}$ and $B \in M_{n, m}$, show that if $N\left(B A-I_{n}\right)=\left\{\overrightarrow{0}_{n}\right\}$ then $N\left(A B-I_{m}\right)=\left\{\overrightarrow{0}_{m}\right\}$. [Here, $N(D)$ refers to the null space of D. Be careful! Neither A nor B is square.]

Do any TWO (2) of these "Computational" problems

C.1. [15 points] Let V be the vector space of all 3×3 upper-triangular matrices with trace 0 and let $T: V \longrightarrow \mathbf{C}^{3}$ be the linear transformation given by

$$
T\left(\left[\begin{array}{ccc}
a & b & c \\
0 & d & e \\
0 & 0 & -a-d
\end{array}\right]\right)=\left[\begin{array}{c}
a+e \\
b-2 c+d \\
2 a+3 d
\end{array}\right]
$$

1. Find a basis for the kernel of $T, \operatorname{ker}(T)$.
C.2. [15 points] Given the matrix $A=\left[\begin{array}{cccc}1 & 0 & -3 & 1 \\ 2 & 1 & -7 & 4\end{array}\right]$. Find a 4×4 matrix B for which the null space of A is the same as the column space of B. That is, find B so that $N(A)=C(B)$..
C.3. [15 points] The matrix $M_{B, C}^{T}$ given below is the matrix representation of a certain linear transformation $T: P_{3} \longrightarrow P_{2}$ with respect to the "standard" bases $B=\left\{1, x, x^{2}, x^{3}\right\}$ for P_{3} and $C=\left\{1, x, x^{2}\right\}$ for P_{2}.

$$
M_{B, C}^{T}=\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 1 \\
-1 & 1 & 0 & -1
\end{array}\right]
$$

Compute $T\left(2+3 x-4 x^{2}+5 x^{3}\right)$.

Useful Information

- The set of all infinite sequences with complex numbers as terms, $\mathbf{C}^{\infty}=\left\{\left(a_{1}, a_{2}, a_{3}, \cdots\right) \mid a_{i} \in \mathbf{C}, 1 \leq i\right\}$ is a vector space under the following definitions of equality, addition, and scalar multiplication.

1. $\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(b_{1}, b_{2}, b_{3}, \cdots\right)$ if and only if $a_{i}=b_{i}$ for each $i \geq 1$.
2. $\left(a_{1}, a_{2}, a_{3}, \cdots\right)+\left(b_{1}, b_{2}, b_{3}, \cdots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, \cdots\right)$
3. $\alpha\left(a_{1}, a_{2}, a_{3}, \cdots\right)=\left(\alpha a_{1}, \alpha a_{2}, \alpha a_{3}, \cdots\right)$
