Smith

Final Exam (December 12)

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do BOTH of the following.

R.1. Let V be the subset of \mathbf{C}^∞ (see Useful Information below) defined by

$$V = \left\{ (a_1, a_2, a_3, \cdots) \in \mathbf{C}^{\infty} \middle| \begin{array}{c} a_1, a_2 \in \mathbf{C} \\ a_k = a_{k-1} + 6a_{k-2}, \quad k \ge 3 \end{array} \right\}$$

Prove that V is a subspace of \mathbf{C}^{∞} .

R.2. Use the method of Mathematical Induction to prove the following property of inner products is true for every positive integer n.

If
$$\vec{x}_1, \cdots, \vec{x}_n, \vec{y} \in \mathbf{C}^m$$
, then $\left\langle \sum_{k=1}^n \vec{x}_k, \vec{y} \right\rangle = \sum_{k=1}^n \left\langle \vec{x}_k, \vec{y} \right\rangle$.

Do TWO (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 points] A certain 6×6 matrix C can be written as C = AB where A is 6×4 and B is 4×6 . Explain how you know that det (C) = 0.
- M.2. [15 points] Prove Theorem FTMR, Fundamental Theorem of Matrix Representation:
 - 1. Suppose that $T: U \to V$ is a linear transformation, $B = \{\vec{u}_1, \cdots, \vec{u}_n\}$ is a basis for $U, C = \{\vec{v}_1, \cdots, \vec{v}_m\}$ is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\vec{u} \in U$, $\rho_C(T(u)) = M_{B,C}^T(\rho_B(\vec{u}))$
- **M.3.** [15 points] Prove: If A is diagonalizable, then A^T is similar to A.
- M.4. [15 points] Prove Theorem CLTLT, Composition of Linear Transformations is a Linear Transformation using the definition of linear transformation.
 - 1. Suppose that $T: U \mapsto V$ and $S: V \mapsto W$ are linear transformations. Then $(S \circ T): U \mapsto W$ is a linear transformation.

Do any THREE (3) of these "Other" problems

- **T.1.** [5, 10 points] Suppose that $T: V \longrightarrow V$ is a linear transformation. Prove that $(T \circ T)(\vec{v}) = \vec{0}$ for every $\vec{v} \in V$ if and only if $R(T) \subseteq K(T)$ (the range of is a subset of the kernel of T).
- **T.2.** [15 points] Determine if $T: P_2 \to P_2$ defined by T(f(x)) = f(x+1) is an isomorphism. You may assume T has already been shown to be a linear transformation.
- **T.3.** [15 points] We say B is a square root of A if A and B are both square and $B^2 = A$. Clearly, the diagonal

	d_{11}	0	• • •	0		$(d_{11})^{1/2}$	0	• • •	0	
matrix $D =$	0	0		0		0	0		0	as a square root.
	.				has				.	
	:	:	••	:		:	:	•.	:	
	0	0	• • •	d_{nn}		0	0	•••	$(d_{nn})^{1/2}$	

- 1. Prove that if A is a **diagonalizable** matrix, then A has a square root.
- **T.4.** [15 points] Given $A \in M_{m,n}$ and $B \in M_{n,m}$, show that if $N(BA I_n) = \{\vec{0}_n\}$ then $N(AB I_m) = \{\vec{0}_m\}$. [Here, N(D) refers to the null space of D. Be careful! Neither A nor B is square.]

Do any TWO (2) of these "Computational" problems

C.1. [15 points] Let V be the vector space of all 3×3 upper-triangular matrices with trace 0 and let $T: V \longrightarrow \mathbb{C}^3$ be the linear transformation given by

$$T\left(\left[\begin{array}{rrrr}a&b&c\\0&d&e\\0&0&-a-d\end{array}\right]\right) = \left[\begin{array}{rrrr}a+e\\b-2c+d\\2a+3d\end{array}\right]$$

- 1. Find a basis for the kernel of T, ker (T).
- **C.2.** [15 points] Given the matrix $A = \begin{bmatrix} 1 & 0 & -3 & 1 \\ 2 & 1 & -7 & 4 \end{bmatrix}$. Find a 4×4 matrix B for which the null space of A is the same as the column space of B. That is, find B so that N(A) = C(B)..
- **C.3.** [15 points] The matrix $M_{B,C}^T$ given below is the matrix representation of a certain linear transformation $T: P_3 \longrightarrow P_2$ with respect to the "standard" bases $B = \{1, x, x^2, x^3\}$ for P_3 and $C = \{1, x, x^2\}$ for P_2 .

$$M_{B,C}^T = \left[\begin{array}{rrrr} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 1 & 0 & -1 \end{array} \right].$$

Compute $T(2+3x-4x^2+5x^3)$.

Useful Information

- The set of all infinite sequences with complex numbers as terms, $\mathbf{C}^{\infty} = \{(a_1, a_2, a_3, \cdots) \mid a_i \in \mathbf{C}, 1 \leq i\}$ is a vector space under the following definitions of equality, addition, and scalar multiplication.
 - 1. $(a_1, a_2, a_3, \dots) = (b_1, b_2, b_3, \dots)$ if and only if $a_i = b_i$ for each $i \ge 1$.
 - 2. $(a_1, a_2, a_3, \dots) + (b_1, b_2, b_3, \dots) = (a_1 + b_1, a_2 + b_2, a_3 + b_3, \dots)$
 - 3. $\alpha(a_1, a_2, a_3, \cdots) = (\alpha a_1, \alpha a_2, \alpha a_3, \cdots)$