Final Exam (December 15)

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any TWO (2) of these "Computational" problems

C.1. [15 points] The sets $B=\left\{1+x, 2+x^{2}, 3+x+x^{2}\right\}$ and $D=\left\{3,2-x, 1-x^{2}\right\}$ are both bases for P_{2}.Compute the change of basis matrix $C_{B, D}$ and use it to compute $\rho_{D}\left(5(1+x)+4\left(2+x^{2}\right)\right)$
C.2. [15 points] Using anything you know about determinants, compute the determinant of the following matrix by hand

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 2 & 3 & 0 \\
0 & 4 & 4 & 6 & 1 \\
1 & 2 & 3 & 6 & 0 \\
-1 & 4 & 0 & 3 & 0 \\
-1 & 2 & 3 & 6 & 0
\end{array}\right]
$$

C.3. $\left[8,7\right.$ points] Given the matrix $A=\left[\begin{array}{cccc}1 & 0 & -3 & 1 \\ 2 & 1 & -8 & 3\end{array}\right]$.

1. Find a 4×4 matrix B for which the null space of A is the same as the column space of B. That is, find B so that $N(A)=C(B)$.
2. Now find a matrix F so that $N(F)=C(A)$

Do any TWO (2) of these "In Class, Text, Homework, or Similar" problems

M.1. [15 points] Prove that a subset W of a vector space V is a subspace if and only if $\alpha \vec{w}_{1}+\beta \vec{w}_{2} \in W$ is true for all $\vec{w}_{1}, \vec{w}_{2} \in W$ and for all $\alpha, \beta \in \mathbf{C}$.
M.2. [15 points] Prove Theorem FTMR, Fundamental Theorem of Matrix Representation:

1. Suppose that $T: U \rightarrow V$ is a linear transformation, $B=\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{n}\right\}$ is a basis for U, C is a basis for V and $M_{B, C}^{T}$ is the matrix representation of T relative to B and C. Then, for any $\vec{u} \in U, \rho_{C}(T(u))=M_{B, C}^{T}\left(\rho_{B}(\vec{u})\right)$.
M.3. [15 points] Let $T, U: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ be linear transformations. Prove the function $T+U: \mathbf{C}^{n} \rightarrow \mathbf{R}^{m}$ defined by $(T+U)(\vec{x})=T(\vec{x})+U(\vec{x})$ for all \vec{x} in \mathbf{C} is also a linear transformation.
M.4. [15 points] Prove that cancellation holds in a vector space. That is, prove the following theorem. If V is a vector space, $\vec{v}_{1}, \vec{v}_{2} \in V$, and $\alpha, \beta \in \mathbf{C}$. Then
2. If $\alpha \vec{v}_{1}=\beta \vec{v}_{1}$ and $\vec{v}_{1} \neq \overrightarrow{0}$ then $\alpha=\beta$ and
3. If $\alpha \vec{v}_{1}=\alpha \vec{v}_{2}$ and $\alpha \neq 0$ then $\vec{v}_{1}=\vec{v}_{2}$

Do any THREE (3) of these "Other" problems

T.1. [5, 10 points] Let V be a vector space and $Z=\left\{\overrightarrow{0}_{V}\right\}$. Define a function $S_{Z}: V \rightarrow Z$ by $S_{Z}(\vec{v})=\overrightarrow{0}_{V}$ for all $\vec{v} \in V$.

1. Prove that S_{Z} is a linear transformation. (You need not prove that Z is a vector space.)
2. Prove that $T: V \rightarrow V$ is surjective if and only if $K\left(S_{Z}\right) \subseteq R(T)$ (the kernel of S_{Z} is a subset of the range of T.)

$$
V \xrightarrow{T} V \xrightarrow{S_{Z}} \overrightarrow{0}
$$

T.2. [15 points] Prove that if a set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \cdots, \vec{v}_{n}\right\}$ is a linearly dependent set of nonzero vectors, then there is an index t for which \vec{v}_{t} is equal to a linear combination of the vectors $\vec{v}_{t+1}, \vec{v}_{t+2}, \cdots, \vec{v}_{n}$ that follow it in S.
T.3. [15 points] Given an $m \times n$ matrix A and an $n \times m$ matrix B where $m \neq n$. Show that if $N\left(B A-I_{n}\right)=\left\{\overrightarrow{0}_{n}\right\}$ then $N\left(A B-I_{m}\right)=\left\{\overrightarrow{0}_{m}\right\}$. [Here, $N(D)$ refers to the null space of D. Be careful! Neither A nor B is square.]
T.4. [15 points] Suppose A is a square matrix with the property that $\operatorname{ker}\left(A^{2}\right)=\operatorname{ker}\left(A^{3}\right)$. Prove that $\operatorname{ker}\left(A^{3}\right)=$ $\operatorname{ker}\left(A^{4}\right)$.

You must do both of these problems ON THIS SHEET

R.1. [15 points] Prove that the set $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{C}^{3}: 5 x_{1}-7 x_{2}-2 x_{3}=0\right\}$ is a subspace of \mathbf{C}^{3} by applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester's writing exercises.
R.2. [15 points] Suppose that $Z: V \longrightarrow V$ is the linear transformation denoted by $Z(\mathbf{v})=\mathbf{0}$ for all $\mathbf{v} \in V$ (i.e. Z is the "zero" linear transformation). Suppose that $T: V \longrightarrow V$ is a linear transformation such that $T^{4}=Z$ (where $T^{4}=T \circ T \circ T \circ T$). Use a proof by contradiction to prove that T is not invertible. Write your proof according to the standards of this semester's writing exercises.

Staging Area

Computations

Not Seen before

1. Find a basis for the kernel of the linear transformation $T: M_{2,2} \rightarrow M_{2,2}$ defined by $T(A)=\frac{1}{2} A-\frac{1}{2} A^{t}$.
2. ${ }^{* * *}$
3. If T is conjugate to the identity map then T is an isomorphism.
4. It is "obvious" that if $a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{k} \vec{v}_{k}=\overrightarrow{0}$ is a nontrivial relation of linear dependence and if $a_{i} \neq 0$, then \vec{v}_{i} is in the span of the remaining vectors. Use this fact to
5. ${ }^{* * *}$ Define $\vec{v}+\operatorname{ker}(T)$ and have students show the set of all such is a vector isomorphic to $T(V)$.
(a) Show $\vec{v}_{1}+\operatorname{ker}(T)=\vec{v}_{2}+\operatorname{ker}(T)$ if and only if $\vec{v}_{2}-\vec{v}_{1} \in \operatorname{ker}(T)$
(b) Show well-defined
(c) Show injective
(d) Show surjective
6. ${ }^{* * *}$ Show that T is surjective iff $\operatorname{ker}(z) \subset R(T)$
C.4. Let $S: P_{2} \longrightarrow P_{3}$ be given by $S(p)=x^{3} p^{\prime \prime}-x^{2} p^{\prime}+3 p$. Find the matrix representation of S with respect to the bases B, C where the basis for P_{2} is $B=\left\{x+1, x+2, x^{2}\right\}$ and the basis for P_{3} is $C=\left\{1, x, x^{2}, x^{3}\right\}$.
