Smith Math 290 Fall 2010

Final Exam (December 15)

I affirm this work abides by the university’s Academic Honesty Policy.

Print Name, then Sign

Directions:
e Only write on one side of each page.
e Use terminology correctly.

e Partial credit is awarded for correct approaches so justify your steps.

Do any TWO (2) of these ”Computational” problems

C.1. [15 points] The sets B = {1+, 2+2? 3+z+a?} and D = {3, 2—z, 1—2?} are both bases for
P,.Compute the change of basis matrix Cp p and use it to compute pp (5 (1 + ) +4 (2 + z?))

C.2. [15 points] Using anything you know about determinants, compute the determinant of the following matrix by

hand
0 2 2 3 0
0 4 4 6 1
A= 1 2 3 6 0
-1 4 0 3 0
-1 2 3 6 0
. . . 1 0 -3 1
C.3. [8,7 points| Given the matrix A = [ 5 1 -8 3 } .

1. Find a 4 x 4 matrix B for which the null space of A is the same as the column space of B. That is, find
B so that N (A) =C(B).

2. Now find a matrix F' so that N (F) = C (A)

Do any TWO (2) of these “In Class, Text, Homework, or Similar” problems

M.1. [15 points] Prove that a subset W of a vector space V is a subspace if and only if aw + Sy € W is true for
all Wy, Wy € W and for all o, 5 € C.

M.2. [15 points] Prove Theorem FTMR, Fundamental Theorem of Matrix Representation:

1. Suppose that T : U — V is a linear transformation, B = {, iz, - , @, } is a basis for U, C is a basis for V' and
Mg,c is the matrix representation of T relative to B and C. Then, for any @ € U, po (T(u)) = ngc(pB (10)).

M.3. [15 points] Let T,U : C™ — C™ be linear transformations. Prove the function T'+ U : C™ — R™ defined by
(T+U)(7)=T(Z)+U(Z) for all ¥ in C is also a linear transformation.

M.4. [15 points] Prove that cancellation holds in a vector space. That is, prove the following theorem.

If V is a vector space, v1,03 € V, and o, 8 € C. Then

1. If av; = v and vy # 0 then o = £ and

2. If ath = avy and a # 0 then U = U5



Do any THREE (3) of these “Other” problems

T.1.

T.3.

[5,10 points] Let V' be a vector space and Z = {GV} Define a function Sz : V. — Z by Sz () = Oy for all
vevV.

1. Prove that Sz is a linear transformation. (You need not prove that Z is a vector space.)
2. Prove that T : V — V is surjective if and only if K (Sz) C R(T) (the kernel of Sz is a subset of the range

of T.)
vIov 25§
. [15 points] Prove that if a set S = {0y, ¥s, 73, -+, VU, } is a linearly dependent set of nonzero vectors, then there
is an index t for which ¥} is equal to a linear combination of the vectors ¥yy1, U410, -+ , U, that follow it in S.

[15 points] Given an m x n matrix A and an n X m matrix B where m # n. Show that if N (BA —1I,,) = {Gn}
then N (AB — I,,) = {Gm} [Here, N (D) refers to the null space of D. Be careful! Neither A nor B is square.]

. [15 points] Suppose A is a square matrix with the property that ker (42) = ker (A®) . Prove that ker (4%) =

ker (A%).

You must do both of these problems ON THIS SHEET

R.1.

Eal
[15 points] Prove that the set V = o | € C3: Bxy — Ty —2x3 =0 p is a subspace of C® by applying
Zs3
the three-part test of Theorem TSS. Write your proof according to the standards of this semester’s writing
exercises.

. [15 points] Suppose that Z : V. — V is the linear transformation denoted by Z(v) =0 for all v e V (i.e. Z

is the “zero” linear transformation). Suppose that T : V — V is a linear transformation such that 7% = Z
(where T* = T oT o T o T). Use a proof by contradiction to prove that 7" is not invertible. Write your proof
according to the standards of this semester’s writing exercises.
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Find a basis for the kernel of the linear transformation 7' : My o — Ms o defined by T (A) = %A — %At.
ook
If T is conjugate to the identity map then 7T is an isomorphism.

It is “obvious” that if a1 + as¥s + - - - + axvy = 0 is a nontrivial relation of linear dependence and if a; £ 0,
then vj; is in the span of the remaining vectors. Use this fact to

*4% Define ¥ + ker (T') and have students show the set of all such is a vector isomorphic to T' (V).



(a) Show v} + ker (T') = v + ker (T) if and only if 05 — @1 € ker (T)
(b) Show well-defined

(c¢) Show injective

(d) Show surjective

6. *** Show that T is surjective iff ker () C R (T)

C.4. Let S : P, — P3 be given by S (p) = 2%p” — 2%p’ + 3p. Find the matrix representation of S with respect to
the bases B, C' where the basis for P, is B = {x +1,x+ 2,:r2} and the basis for P3 is C' = {1,x,x2,x3} .



