Final Exam (December 15)

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any TWO (2) of these "Computational" problems

- **C.1.** [15 points] The sets $B = \{1+x, 2+x^2, 3+x+x^2\}$ and $D = \{3, 2-x, 1-x^2\}$ are both bases for P_2 . Compute the change of basis matrix $C_{B,D}$ and use it to compute $\rho_D(5(1+x)+4(2+x^2))$
- C.2. [15 points] Using anything you know about determinants, compute the determinant of the following matrix by hand

$$A = \begin{bmatrix} 0 & 2 & 2 & 3 & 0 \\ 0 & 4 & 4 & 6 & 1 \\ 1 & 2 & 3 & 6 & 0 \\ -1 & 4 & 0 & 3 & 0 \\ -1 & 2 & 3 & 6 & 0 \end{bmatrix}$$

C.3. [8,7 points] Given the matrix $A = \begin{bmatrix} 1 & 0 & -3 & 1 \\ 2 & 1 & -8 & 3 \end{bmatrix}$.

- 1. Find a 4×4 matrix *B* for which the null space of *A* is the same as the column space of *B*. That is, find *B* so that N(A) = C(B).
- 2. Now find a matrix F so that N(F) = C(A)

Do any TWO (2) of these "In Class, Text, Homework, or Similar" problems

- **M.1.** [15 points] Prove that a subset W of a vector space V is a subspace if and only if $\alpha \vec{w_1} + \beta \vec{w_2} \in W$ is true for all $\vec{w_1}, \vec{w_2} \in W$ and for all $\alpha, \beta \in \mathbf{C}$.
- M.2. [15 points] Prove Theorem FTMR, Fundamental Theorem of Matrix Representation:
 - 1. Suppose that $T: U \to V$ is a linear transformation, $B = \{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_n\}$ is a basis for U, C is a basis for V and $M_{B,C}^T$ is the matrix representation of T relative to B and C. Then, for any $\vec{u} \in U$, $\rho_C(T(u)) = M_{B,C}^T(\rho_B(\vec{u}))$.
- **M.3.** [15 points] Let $T, U : \mathbf{C}^n \to \mathbf{C}^m$ be linear transformations. Prove the function $T + U : \mathbf{C}^n \to \mathbf{R}^m$ defined by $(T + U)(\overrightarrow{x}) = T(\overrightarrow{x}) + U(\overrightarrow{x})$ for all \overrightarrow{x} in **C** is also a linear transformation.
- **M.4.** [15 points] Prove that cancellation holds in a vector space. That is, prove the following theorem. If V is a vector space, $\vec{v_1}, \vec{v_2} \in V$, and $\alpha, \beta \in \mathbf{C}$. Then
 - 1. If $\alpha \vec{v_1} = \beta \vec{v_1}$ and $\vec{v_1} \neq \vec{0}$ then $\alpha = \beta$ and
 - 2. If $\alpha \vec{v}_1 = \alpha \vec{v}_2$ and $\alpha \neq 0$ then $\vec{v}_1 = \vec{v}_2$

Do any THREE (3) of these "Other" problems

- **T.1.** [5, 10 points] Let V be a vector space and $Z = \{\vec{0}_V\}$. Define a function $S_Z : V \to Z$ by $S_Z(\vec{v}) = \vec{0}_V$ for all $\vec{v} \in V$.
 - 1. Prove that S_Z is a linear transformation. (You need not prove that Z is a vector space.)
 - 2. Prove that $T: V \to V$ is surjective if and only if $K(S_Z) \subseteq R(T)$ (the kernel of S_Z is a subset of the range of T.)

$$V \xrightarrow{T} V \xrightarrow{S_Z} \vec{0}$$

- **T.2.** [15 points] Prove that if a set $S = {\vec{v_1}, \vec{v_2}, \vec{v_3}, \dots, \vec{v_n}}$ is a linearly dependent set of nonzero vectors, then there is an index t for which $\vec{v_t}$ is equal to a linear combination of the vectors $\vec{v_{t+1}}, \vec{v_{t+2}}, \dots, \vec{v_n}$ that follow it in S.
- **T.3.** [15 points] Given an $m \times n$ matrix A and an $n \times m$ matrix B where $m \neq n$. Show that if $N(BA I_n) = \left\{\vec{0}_n\right\}$ then $N(AB I_m) = \left\{\vec{0}_m\right\}$. [Here, N(D) refers to the null space of D. Be careful! Neither A nor B is square.]
- **T.4.** [15 points] Suppose A is a square matrix with the property that $\ker(A^2) = \ker(A^3)$. Prove that $\ker(A^3) = \ker(A^4)$.

You must do both of these problems ON THIS SHEET

- **R.1.** [15 points] Prove that the set $V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbf{C}^3 : 5x_1 7x_2 2x_3 = 0 \right\}$ is a subspace of \mathbf{C}^3 by applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester's writing exercises.
- **R.2.** [15 points] Suppose that $Z: V \longrightarrow V$ is the linear transformation denoted by $Z(\mathbf{v}) = \mathbf{0}$ for all $\mathbf{v} \in V$ (i.e. Z is the "zero" linear transformation). Suppose that $T: V \longrightarrow V$ is a linear transformation such that $T^4 = Z$ (where $T^4 = T \circ T \circ T \circ T$). Use a proof by contradiction to prove that T is not invertible. Write your proof according to the standards of this semester's writing exercises.

Staging Area

Computations

Not Seen before

- 1. Find a basis for the kernel of the linear transformation $T: M_{2,2} \to M_{2,2}$ defined by $T(A) = \frac{1}{2}A \frac{1}{2}A^t$.
- 2. ***
- 3. If T is conjugate to the identity map then T is an isomorphism.
- 4. It is "obvious" that if $a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k = \vec{0}$ is a nontrivial relation of linear dependence and if $a_i \neq 0$, then \vec{v}_i is in the span of the remaining vectors. Use this fact to
- 5. *** Define $\vec{v} + \ker(T)$ and have students show the set of all such is a vector isomorphic to T(V).

- (a) Show $\vec{v}_1 + \ker(T) = \vec{v}_2 + \ker(T)$ if and only if $\vec{v}_2 \vec{v}_1 \in \ker(T)$
- (b) Show well-defined
- (c) Show injective
- (d) Show surjective
- 6. *** Show that T is surjective iff ker $(z) \subset R(T)$
- **C.4.** Let $S: P_2 \longrightarrow P_3$ be given by $S(p) = x^3 p'' x^2 p' + 3p$. Find the matrix representation of S with respect to the bases B, C where the basis for P_2 is $B = \{x + 1, x + 2, x^2\}$ and the basis for P_3 is $C = \{1, x, x^2, x^3\}$.