I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do two (2) of these "Computational" problems

C.1. [15 points] Solve the following system of equations by hand.

$$
\left\{\begin{array}{c}
x_{3}-x_{4}-x_{5}=4 \\
2 x_{1}+4 x_{2}+2 x_{3}+4 x_{4}+2 x_{5}=4 \\
2 x_{1}+4 x_{2}+3 x_{3}+3 x_{4}+3 x_{5}=4 \\
3 x_{1}+6 x_{2}+6 x_{3}+3 x_{4}+6 x_{5}=6
\end{array}\right.
$$

C.2. [15 points] Let V be the vector space of all functions of the form $f(t)=c_{1} \cos (t)+c_{2} \sin (t)$ where c_{1} and c_{2} are arbitrary complex numbers. That is, V is the subspace of F with basis $B=$ $\{\cos (t), \sin (t)\}$.

1. Find the matrix representation $M_{B, B}^{T}$ of the linear transformation $T: V \rightarrow V$ defined by $T(f)=f^{\prime \prime}+3 f^{\prime}+2 f$.
2. Is T an isomorphism?
C.3. [15 Points] Find a basis for the range of the linear transformation $T: M_{2,2} \rightarrow M_{2,2}$ defined by $T(A)=\frac{1}{2} A+\frac{1}{2} A^{t}$.

Do any two (2) of these "Similar to In Class, Text, or Homework" problems
M.1. [15 Points] Prove that $T: U \rightarrow V$ is a linear transformation if and only if $T\left(\alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2}\right)=$ $\alpha_{1} T\left(\vec{u}_{1}\right)+\alpha_{2} T\left(\vec{u}_{2}\right)$ for all $\vec{u}_{1}, \vec{u}_{2} \in U$ and all $\alpha_{1}, \alpha_{2} \in \mathbf{C}$.
M.2. [15 Points] Prove that if $T: U \rightarrow V$ is a linear transformation and X is a subspace of V then the pre-image of X under $T, T^{-1}(X)=\{\vec{u} \in U: T(\vec{u}) \in X\}$, is a subspace of U.
M.3. [15 Points] Use matrix multiplication notation to prove that if $A \in M_{m n}$ and $B \in M_{n p}$ then

1. $N(B) \subseteq N(A B)$
2. $C(A B) \subseteq C(A)$

Do two (2) of these "Other" problems

T.1. [15 Points] Given that $A \in M_{m n}$ and $B \in M_{n m}$ where $m \neq n$ and $A B=I_{m}$. Use a proof by contradiction to show that the columns of B must be linearly independent.
T.2. [15 Points] Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and define a function $T: P_{2} \rightarrow M_{2,2}$ by $T(p)=p(A)$.

1. Show T is a linear transformation.
2. Determine if T is injective by computing the null space of the matrix representation $M_{B, C}^{T}$ where B and C are the standard bases of P_{2} and M_{22}, respectively.
T.3. [15 Points] Let V be a subspace of \mathbf{C}^{n} and define the orthogonal complement of V by $V^{\perp}=$ $\left\{\vec{x} \in \mathbf{C}^{n} \mid\langle\vec{x}, \vec{v}\rangle=0\right.$ for every $\left.\vec{v} \in V\right\}$.
3. Show that V^{\perp} is a subspace of \mathbf{C}^{n}.
4. Find a basis of V^{\perp} in the special case where $V=\left\langle\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}\right\rangle \subseteq \mathbf{C}^{3}$.
T.4. [15 Points] Let $T: M_{n n} \rightarrow M_{n n}$ be defined by $T(A)=A^{t}$. Find all eigenvalues of T and describe all of the eigenspaces. [Hint: consider the linear transformation $T \circ T$.]
T.5. [15 points] Professor Beezer has proven that if V is a finite-dimensional vector space and $T: V \rightarrow V$ has $\operatorname{ker}(T)=\{\overrightarrow{0}\}$ then T is an isomorphism. Show that this is not necessarily the case if V is infinite dimensional by giving an example of a linear transformation $T: P \rightarrow P$ that is not surjective but that has $\operatorname{ker}(T)=\{\overrightarrow{0}\}$. [Recall that P is the infinite dimensional vector space of all polynomials.]

You must do both of these problems ON THIS SHEET

R.1. [15 points] Prove that the set $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{C}^{3}:-2 x_{1}+4 x_{2}+3 x_{3}=0\right\}$ is a subspace of \mathbf{C}^{3} by applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester's writing exercises.
R.2. [15 points] Part of Theorem NPNT ("Nonsingular Products, Nonsingular Terms") says: If A and B are square matrices of the same size, and $A B$ is nonsingular, then B is nonsingular. Construct a proof by contradiction of this fact and write your proof according to the standards of this semester's writing exercises. (You may not use Theorem NPNT in your proof.)

