Fall 2009

Final Exam

December 16, 2009

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do two (2) of these "Computational" problems

C.1. [15 points] Solve the following system of equations by hand.

 $\begin{cases} x_3 - x_4 - x_5 = 4\\ 2x_1 + 4x_2 + 2x_3 + 4x_4 + 2x_5 = 4\\ 2x_1 + 4x_2 + 3x_3 + 3x_4 + 3x_5 = 4\\ 3x_1 + 6x_2 + 6x_3 + 3x_4 + 6x_5 = 6 \end{cases}$

- **C.2.** [15 points] Let V be the vector space of all functions of the form $f(t) = c_1 \cos(t) + c_2 \sin(t)$ where c_1 and c_2 are arbitrary complex numbers. That is, V is the subspace of F with basis $B = \{\cos(t), \sin(t)\}$.
 - 1. Find the matrix representation $M_{B,B}^T$ of the linear transformation $T: V \to V$ defined by T(f) = f'' + 3f' + 2f.
 - 2. Is T an isomorphism?
- **C.3.** [15 Points] Find a basis for the range of the linear transformation $T: M_{2,2} \to M_{2,2}$ defined by $T(A) = \frac{1}{2}A + \frac{1}{2}A^t$.

Do any two (2) of these "Similar to In Class, Text, or Homework" problems

- **M.1.** [15 Points] Prove that $T: U \to V$ is a linear transformation if and only if $T(\alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2) = \alpha_1 T(\vec{u}_1) + \alpha_2 T(\vec{u}_2)$ for all $\vec{u}_1, \vec{u}_2 \in U$ and all $\alpha_1, \alpha_2 \in \mathbf{C}$.
- **M.2.** [15 Points] Prove that if $T: U \to V$ is a linear transformation and X is a subspace of V then the pre-image of X under $T, T^{-1}(X) = \{\vec{u} \in U : T(\vec{u}) \in X\}$, is a subspace of U.
- **M.3.** [15 Points] Use matrix multiplication notation to prove that if $A \in M_{mn}$ and $B \in M_{np}$ then

1. $N(B) \subseteq N(AB)$ 2. $C(AB) \subseteq C(A)$

Do two (2) of these "Other" problems

T.1. [15 Points] Given that $A \in M_{mn}$ and $B \in M_{nm}$ where $m \neq n$ and $AB = I_m$. Use a proof by contradiction to show that the columns of B must be linearly independent.

T.2. [15 Points] Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and define a function $T : P_2 \to M_{2,2}$ by T(p) = p(A).

- 1. Show T is a linear transformation.
- 2. Determine if T is injective by computing the null space of the matrix representation $M_{B,C}^T$ where B and C are the standard bases of P_2 and M_{22} , respectively.
- **T.3.** [15 Points] Let V be a subspace of \mathbf{C}^n and define the orthogonal complement of V by $V^{\perp} = \{\vec{x} \in \mathbf{C}^n \mid \langle \vec{x}, \vec{v} \rangle = 0 \text{ for every } \vec{v} \in V\}$.
 - 1. Show that V^{\perp} is a subspace of \mathbf{C}^n .

2. Find a basis of V^{\perp} in the special case where $V = \left\langle \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix} \right\} \right\rangle \subseteq \mathbf{C}^3$.

- **T.4.** [15 Points] Let $T: M_{nn} \to M_{nn}$ be defined by $T(A) = A^t$. Find all eigenvalues of T and describe all of the eigenspaces. [Hint: consider the linear transformation $T \circ T$.]
- **T.5.** [15 points] Professor Beezer has proven that if V is a finite-dimensional vector space and $T: V \to V$ has ker $(T) = \{\vec{0}\}$ then T is an isomorphism. Show that this is not necessarily the case if V is infinite dimensional by giving an example of a linear transformation $T: P \to P$ that is not surjective but that has ker $(T) = \{\vec{0}\}$.[Recall that P is the infinite dimensional vector space of **all** polynomials.]

You must do both of these problems ON THIS SHEET

R.1. [15 points] Prove that the set $V = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbf{C}^3 : -2x_1 + 4x_2 + 3x_3 = 0 \right\}$ is a subspace of \mathbf{C}^3 by

applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester's writing exercises.

R.2. [15 points] Part of Theorem NPNT ("Nonsingular Products, Nonsingular Terms") says: If A and B are square matrices of the same size, and AB is nonsingular, then B is nonsingular. Construct a proof by contradiction of this fact and write your proof according to the standards of this semester's writing exercises. (You may not use Theorem NPNT in your proof.)