I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Define all three of the following.

D.1. [6 points] The coordinate transformation ρ_{B} where $B=\left\{\vec{b}_{1}, \cdots, \vec{b}_{n}\right\}$ is a basis for the vector space V.
D.2. [7 points] A linearly dependent subset S of a vector space V.
D.3. [7 points] The geometric multiplicity of an eigenvalue.

Do one (1) of these "Computational" problems
C.1. [15 points] Given a vector space W and two subsets of $W: S=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}\right\}$ and $T=\left\{\vec{w}_{1}+2 \vec{w}_{2}+3 \vec{w}_{3}+4 \vec{w}_{4}\right.$, If S is linearly independent in W either prove that T is also linearly independent or write one of the four vectors in T as equal to a linear combination of the other three vectors in T. Show all work.
C.2. [15 points] Given the linear transformation $T: M_{22} \rightarrow M_{22}$ given by $T(A)=A+A^{t}$. Find the matrix representation $M_{B, C}^{T}$ where B is the standard basis of M_{22} and $C=\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right\}$

Do any two (2) of these "In Class, Text, or Homework" problems
M.1. [15 Points] A certain 5×5 matrix C can be written as $C=A B$ where A is 5×4 and B is 4×5. Explain how you know that $\operatorname{det}(C)=0$.
M.2. [15 Points] Prove Theorem AIU from our textbook.

Theorem AIU: Suppose that V is a vector space. For each $\vec{u} \in V$, the additive inverse, $-\vec{u}$ is unique. (You may not use the fact that $-\vec{u}=(-1) \vec{u}$.)
M.3. [15 Points] Prove Theorem CILTI from the textbook.

Theorem CILTI: Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are both injective linear transformations. Then $(S \circ T): U \rightarrow W$ is an injective linear transformation. You may use, without proving it, the fact that $S \circ T$ is a linear transformation.

Do three (3) of these "Other" problems

T.1. [15 Points] Recall the definition given in class that a square matrix A of size n is skew-symmetric if $A^{t}=-A$. Prove that if n is an odd integer then A is not invertible. [Hint: Consider determinants.]
T.2. [15 Points] Suppose $T: U \rightarrow V$ is a function that satisfies the single condition $T(\alpha \vec{x}+\vec{y})=\alpha T(\vec{x})+$ $T(\vec{y})$ for every \vec{x}, \vec{y} in U and every α in C.Prove that $T(\overrightarrow{0})=\overrightarrow{0}$. You may not use the fact that T is a linear transformation.
T.3. [15 Points] Prove that the matrices $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$ are similar by finding a matrix S for which $A=S^{-1} B S$.
T.4. [15 points] Let $B=\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$ be a basis for the subspace V of the vector space F of functions with domain and codomain the set of complex numbers: $F=\{f \mid f: \mathbf{C} \rightarrow \mathbf{C}\}$.

1. Find the matrix representation $M_{B, B}^{T}$ of the linear transformation $T: V \rightarrow V$ defined by $T(f)=f^{\prime}$.
2. Use this matrix representation to find the kernel of T, $\operatorname{ker}(T)$.

You must do both of these problems ON THIS SHEET

R.1. [15 points] Prove that the set $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{C}^{3}: 2 x_{1}-7 x_{2}+x_{3}=0\right\}$ is a subspace of \mathbf{C}^{3} by applying the three-part test of Theorem TSS. Write your proof according to the standards of this semester's writing exercises.
R.2. [15 points] Part of Theorem NPNT ("Nonsingular Products, Nonsingular Terms") says: If A and B are square matrices of the same size, and $A B$ is nonsingular, then B is nonsingular. Construct a proof by contradiction of this fact and write your proof according to the standards of this semester's writing exercises. (You may not do this problem by simply quoting Theorem NPNT.)

