Exam 4

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Partial credit is awarded for correct approaches so justify your steps.

Do one (1) of these "Computational" problems

C.1. [10, 10 points] The sets $B=\left\{1+x, 2+x^{2}, 3+x+x^{2}\right\}$ and $C=\left\{3,2-x, 1-x^{2}\right\}$ are bases for P_{2}.

1. Determine the change of basis matrix $C_{B, C}$.
2. Use it to compute $\rho_{C}\left(5(1+x)+4\left(2+x^{2}\right)\right)$.
C.2. [15,5 points] Given the linear transformation $T: P_{2} \rightarrow C^{3}$ defined by

$$
T\left(a+b x+c x^{2}\right)=\left[\begin{array}{c}
2 a+3 b-c \\
2 b-2 c \\
a-b+2 c
\end{array}\right]
$$

1. Find a basis for the Range of T.
2. Find a vector in \mathbf{C}^{3} that is not in the range of T.

Do two (2) of these "In Class, Text, or Homework" problems

1. [20 points] Prove Theorem ILTLT: Suppose that $T: U \longrightarrow V$ is an invertible linear transformation. Then the function $T^{-1}: V \longrightarrow U$ is a linear transformation.
2. [20 points] Prove that a function $T: U \rightarrow V$ is a linear transformation if and only if for all scalars c, d and for all vectors $\vec{x}, \vec{y} \in U$ we have $T(c \vec{x}+d \vec{y})=c T(\vec{x})+d T(\vec{y})$.
3. [20 points] Prove Theorem ILTLI : Suppose that $T: U \longrightarrow V$ is an injective linear transformation and $S=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{t}\right\}$ is a linearly independent subset of U. Then $R=\left\{T\left(u_{1}\right), T\left(u_{2}\right), T\left(u_{3}\right), \ldots, T\left(u_{t}\right)\right\}$ is a linearly independent subset of V.

Do any two (2) of these "Other" problems

1. [20 Points] Prove that if X is a subspace of V and $T: U \rightarrow V$ is a linear transformation, then the preimage of $X, T^{-1}(X)=\{\vec{u} \in U: T(\vec{u}) \in X\}$, is a subspace of U.
2. [20 Points] Suppose $T: U \longrightarrow V$ is a linear transformation that satisfies $T \circ T=T$.Prove that 0 and 1 are the only eigenvalues of T.
3. [14, 6 Points] Suppose U, V, and W are vector spaces and $T: U \longrightarrow V, S: V \longrightarrow W$ are linear transformations.
(a) Prove $\operatorname{ker}(T) \subseteq \operatorname{ker}(S \circ T)$. [Here, $\operatorname{ker}(T)$ denotes the kernel of T.]
(b) If B, C, D are bases of U, V, W respectively, what result about the matrices $M_{B, C}^{T}, M_{C, D}^{S}$ and $M_{B, D}^{S \circ T}$ corresponds to $\operatorname{ker}(T) \subseteq \operatorname{ker}(S \circ T)$?

Useful information

1. $M_{B, C}^{T}=\left[\rho_{C}\left(T\left(\vec{u}_{1}\right)\right)\left|\rho_{C}\left(T\left(\vec{u}_{2}\right)\right)\right| \cdots \mid \rho_{C}\left(T\left(\vec{u}_{n}\right)\right)\right]$ and If T is the identity map, then $M_{B, C}^{T}$ is the change of basis matrix $C_{B, C}$
