$\mathbf{Exam} \ 4$

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Partial credit is awarded for correct approaches so justify your steps.

Do one (1) of these "Computational" problems

C.1. [10, 10 points] The sets $B = \{1 + x, 2 + x^2, 3 + x + x^2\}$ and $C = \{3, 2 - x, 1 - x^2\}$ are bases for P_2 .

- 1. Determine the change of basis matrix $C_{B,C}$.
- 2. Use it to compute $\rho_C (5(1+x) + 4(2+x^2))$.
- **C.2.** [15, 5 points] Given the linear transformation $T: P_2 \to C^3$ defined by

$$T(a+bx+cx^{2}) = \begin{bmatrix} 2a+3b-c\\ 2b-2c\\ a-b+2c \end{bmatrix}$$

- 1. Find a basis for the Range of T.
- 2. Find a vector in \mathbf{C}^3 that is not in the range of T.

Do two (2) of these "In Class, Text, or Homework" problems

- 1. [20 points] Prove Theorem ILTLT: Suppose that $T: U \longrightarrow V$ is an invertible linear transformation. Then the function $T^{-1}: V \longrightarrow U$ is a linear transformation.
- 2. [20 points] Prove that a function $T: U \to V$ is a linear transformation if and only if for all scalars c, d and for all vectors $\overrightarrow{x}, \overrightarrow{y} \in U$ we have $T(c\overrightarrow{x} + d\overrightarrow{y}) = cT(\overrightarrow{x}) + dT(\overrightarrow{y})$.
- 3. [20 points] Prove Theorem ILTLI : Suppose that $T: U \longrightarrow V$ is an injective linear transformation and $S = \{u_1, u_2, u_3, \ldots, u_t\}$ is a linearly independent subset of U. Then $R = \{T(u_1), T(u_2), T(u_3), \ldots, T(u_t)\}$ is a linearly independent subset of V.

Do any two (2) of these "Other" problems

- 1. [20 Points] Prove that if X is a subspace of V and $T: U \to V$ is a linear transformation, then the preimage of X, $T^{-1}(X) = \{\vec{u} \in U : T(\vec{u}) \in X\}$, is a subspace of U.
- 2. [20 Points] Suppose $T: U \longrightarrow V$ is a linear transformation that satisfies $T \circ T = T$. Prove that 0 and 1 are the only eigenvalues of T.
- 3. [14,6 Points] Suppose U, V, and W are vector spaces and $T: U \longrightarrow V, S: V \longrightarrow W$ are linear transformations.

- (a) Prove $\ker\left(T\right)\subseteq \ker\left(S\circ T\right).$ [Here, $\ker\left(T\right)$ denotes the kernel of T.]
- (b) If B,C,D are bases of U,V,W respectively, what result about the matrices $M_{B,C}^T$, $M_{C,D}^S$ and $M_{B,D}^{S \circ T}$ corresponds to ker $(T) \subseteq \text{ker} (S \circ T)$?

Useful information

1. $M_{B,C}^T = [\rho_C(T(\vec{u}_1)) \mid \rho_C(T(\vec{u}_2)) \mid \cdots \mid \rho_C(T(\vec{u}_n))]$ and If T is the identity map, then $M_{B,C}^T$ is the change of basis matrix $C_{B,C}$