Smith

$\mathbf{Exam} \ 4$

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do all three (3) of these "Computational" problems

- **C.1.** [15 points] Given the matrix $A = \begin{bmatrix} 25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14 \end{bmatrix}$. Find an invertible matrix S with integer entries, the inverse matrix S^{-1} and a diagonal matrix D for which $S^{-1}AS = D$.
- **C.2.** [15 points] Show that the function $T: P_4 \longrightarrow P_2$ defined by T(p) = p''(x) is a linear transformation.

C.3. [5,5 points] Define a linear transformation $T : \mathbf{C}^2 \to \mathbf{C}^2$ by $T\left(a\begin{bmatrix} 2\\1 \end{bmatrix} + b\begin{bmatrix} 1\\-1 \end{bmatrix}\right) = a\begin{bmatrix} 9\\3 \end{bmatrix} + b\begin{bmatrix} 3\\3 \end{bmatrix}$

1. Find the matrix representation $M_{B,C}^T$ where $B = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$ and $C = \left\{ \begin{bmatrix} 9\\3 \end{bmatrix}, \begin{bmatrix} 3\\3 \end{bmatrix} \right\}$. 2. Explain why *T* is invertible.

Do any two (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 points] Prove If A is diagonalizable then A^3 is diagonalizable.
- **M.2.** [15 points] Suppose $T : U \to V$ and $S : U \to V$ are linear transformations and recall that the function $T + S : U \to V$ is defined by $(T + S)(\vec{u}) = T(\vec{u}) + S(\vec{u})$ for all $\vec{u} \in U$. Prove that T + S is a linear transformation.
- **M.3.** [15 points] Prove that if W is a subspace of V and $T: U \to V$ is a linear transformation, then $T^{-1}(W) = \{\vec{u} \in U : T(\vec{u}) \in W\}$ is a subspace of U.

Do any two (2) of these "Other" problems

- **T.1.** [15 points] Prove that if X is a subspace of U and $T: U \to V$ is a linear transformation, then the set $T(X) = \{T(\vec{x}) \in V : \vec{x} \in X\}$ is a subspace of V.
- **T.2.** [10,5 points] Suppose U, V, and W are vector spaces and $T: U \longrightarrow V, S: V \longrightarrow W$ are linear transformations.
 - 1. Prove ker $(T) \subseteq \text{ker} (S \circ T)$.
 - 2. If B,C,D are bases of U,V,W respectively, what result about the matrices $M_{B,C}^T$, $M_{C,D}^S$ and $M_{B,D}^{S\circ T}$ corresponds to ker $(T) \subseteq \text{ker} (S \circ T)$?
- **T.3.** [15 points] Suppose $T : U \to V$ and $S : V \to U$ are linear transformations and dim(U) >dim(V).Prove $S \circ T$ cannot be the identity map $I_U : U \to U$. [Hint: the identity map is injective.]
- **T.4.** [15 points] Suppose U and V are vector spaces where $B = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n}$ is a basis for U and ${\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n, \mathbf{v}_{n+1}, \cdots, \mathbf{v}_m}$ is a basis for V where n < m. Define linear transformations $T: U \to V$ and $S: V \to U$ where $S \circ T = I_U$ (Recall that $I_U: U \to U$ is the identity map).