Exam 4

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do all three (3) of these "Computational" problems

C.1. [15 points] Given the matrix $A=\left[\begin{array}{ccc}25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14\end{array}\right]$. Find an invertible matrix S with integer entries, the inverse matrix S^{-1} and a diagonal matrix D for which $S^{-1} A S=D$.
C.2. [15 points] Show that the function $T: P_{4} \longrightarrow P_{2}$ defined by $T(p)=p^{\prime \prime}(x)$ is a linear transformation.
C.3. [5, 5 points] Define a linear transformation $T: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ by $T\left(a\left[\begin{array}{l}2 \\ 1\end{array}\right]+b\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=a\left[\begin{array}{l}9 \\ 3\end{array}\right]+$ $b\left[\begin{array}{l}3 \\ 3\end{array}\right]$

1. Find the matrix representation $M_{B, C}^{T}$ where $B=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ and $C=\left\{\left[\begin{array}{l}9 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3\end{array}\right]\right\}$.
2. Explain why T is invertible.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Prove If A is diagonalizable then A^{3} is diagonalizable.
M.2. [15 points] Suppose $T: U \rightarrow V$ and $S: U \rightarrow V$ are linear transformations and recall that the function $T+S: U \rightarrow V$ is defined by $(T+S)(\vec{u})=T(\vec{u})+S(\vec{u})$ for all $\vec{u} \in U$. Prove that $T+S$ is a linear transformation.
M.3. [15 points] Prove that if W is a subspace of V and $T: U \rightarrow V$ is a linear transformation, then $T^{-1}(W)=\{\vec{u} \in U: T(\vec{u}) \in W\}$ is a subspace of U.

Do any two (2) of these "Other" problems

T.1. [15 points] Prove that if X is a subspace of U and $T: U \rightarrow V$ is a linear transformation, then the set $T(X)=\{T(\vec{x}) \in V: \vec{x} \in X\}$ is a subspace of V.
T.2. [10, 5 points] Suppose U, V, and W are vector spaces and $T: U \longrightarrow V, S: V \longrightarrow W$ are linear transformations.

1. Prove $\operatorname{ker}(T) \subseteq \operatorname{ker}(S \circ T)$.
2. If B, C, D are bases of U, V, W respectively, what result about the matrices $M_{B, C}^{T}, M_{C, D}^{S}$ and $M_{B, D}^{S \circ T}$ corresponds to $\operatorname{ker}(T) \subseteq \operatorname{ker}(S \circ T)$?
T.3. [15 points] Suppose $T: U \rightarrow V$ and $S: V \rightarrow U$ are linear transformations and $\operatorname{dim}(U)>$ $\operatorname{dim}(V)$. Prove $S \circ T$ cannot be the identity map $I_{U}: U \rightarrow U$. [Hint: the identiy map is injective.]
T.4. [15 points] Suppose U and V are vector spaces where $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}$ is a basis for U and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}, \mathbf{v}_{n+1}, \cdots, \mathbf{v}_{m}\right\}$ is a basis for V where $n<m$. Define linear transformations $T: U \rightarrow V$ and $S: V \rightarrow U$ where $S \circ T=I_{U}$ (Recall that $I_{U}: U \rightarrow U$ is the identity map).
