Exam 4

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

C.1. [15 points] The sets $B=\left\{1+x, 2+x^{2}, 3+x+x^{2}\right\}$ and $D=\left\{3,2-x, 1-x^{2}\right\}$ are both bases for P_{2}.Compute the change of basis matrix $C_{B, D}$ and use it to compute $\rho_{D}\left(5(1+x)+4\left(2+x^{2}\right)\right)$
C.2. [15 points] Consider a linear transformation $T(\vec{x})=A \vec{x}$ from \mathbf{C}^{n} to \mathbf{C}^{n}. The set $B=\left\{-\overrightarrow{e_{1}}, \overrightarrow{e_{2}},-\overrightarrow{e_{3}}, \cdots,(-\right.$ a basis of \mathbf{C}^{n}. Describe the entries of $M_{B, B}^{T}$ in terms of the entries of A.
C.3. [15 points] Find the matrix representation $M_{B, B}^{T}$ of the linear transformation $T: P_{2} \rightarrow P_{2}$ defined by $T(f(x))=f(x-2)$ where $B=\left\{1, x, x^{2}\right\}$ is the standard basis of P_{2}.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Prove Theorem ILTLT: Suppose that $T: U \rightarrow V$ is an invertible linear transformation. Then $T^{-1}: V \rightarrow U$ is a linear transformation.
M.2. [15 points] Prove either half of Theorem ILTB: Suppose that $T: U \rightarrow V$ is a linear transformation and $B=\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{n}\right\}$ is a basis for U. Then T is injective if and only if the set $C=\left\{T\left(\vec{u}_{1}\right), T\left(\vec{u}_{2}\right), \cdots, T\left(\vec{u}_{n}\right)\right\}$ is linearly independent.
M.3. [15 points] Prove that if A is diagonalizable, then A^{-1} is diagonalizable.
M.4. [15 points] Prove that if U and V are vector spaces, W is a subspace of V and $T: U \rightarrow V$ is a linear transformation, then $T^{-1}(W)$ is a subspace of U. (The preimage of W is a subspace of U.)

Do any two (2) of these "Other" problems

T.1. [15 points] If $T: V \rightarrow V$ is a linear transformation, prove that $(T \circ T)(\vec{v})=\overrightarrow{0}$ for every vector $\vec{v} \in V$ if and only if $R(T) \subseteq K(T)$ (the range of T is a subset of the kernel of T)
T.2. [15 points] Let $B=\left\{1, x, x^{2}\right\}$ be the standard basis of $P_{2}, f(x)=2+x$, and $V=\left\{g \in P_{2}:\left\langle\rho_{B}(g), \rho_{B}(f)\right\rangle=\right.$ Find a basis for the vector space V (you do not have to show that V is a subspace of P_{2} - just find a basis.)
T.3. [5, 10 points] Let V be a vector space and $Z=\left\{\overrightarrow{0}_{V}\right\}$. Define a function $I_{Z}: Z \rightarrow V$ by $I_{Z}\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{V}$.

1. Prove that I_{Z} is a linear transformation. (You need not prove that Z is a vector space.)
2. Prove that $T: V \rightarrow V$ is injective if and only if $K(T) \subseteq R\left(I_{Z}\right)$ (the kernel of T is a subset of the range of I_{Z}.)

$$
\overrightarrow{0} \quad \xrightarrow{I_{Z}} V \xrightarrow{T} V
$$

