$\mathbf{Exam} \ 4$

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

- **C.1.** [15 points] The sets $B = \{1 + x, 2 + x^2, 3 + x + x^2\}$ and $D = \{3, 2 x, 1 x^2\}$ are both bases for P_2 . Compute the change of basis matrix $C_{B,D}$ and use it to compute $\rho_D(5(1+x)+4(2+x^2))$
- **C.2.** [15 points] Consider a linear transformation $T(\vec{x}) = A\vec{x}$ from \mathbf{C}^n to \mathbf{C}^n . The set $B = \{-\vec{e_1}, \vec{e_2}, -\vec{e_3}, \cdots, (-1, \vec{e_2}), \vec{e_2}, -\vec{e_3}, \cdots, (-1, \vec{e_2}), \vec{e_2}, \vec{e_3}, \cdots, (-1, \vec{e_2}), \vec{e_3}, \cdots, \vec{e_n}, \vec{e_n$
- **C.3.** [15 points] Find the matrix representation $M_{B,B}^T$ of the linear transformation $T: P_2 \to P_2$ defined by T(f(x)) = f(x-2) where $B = \{1, x, x^2\}$ is the standard basis of P_2 .

Do any two (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 points] Prove Theorem ILTLT: Suppose that $T: U \to V$ is an invertible linear transformation. Then $T^{-1}: V \to U$ is a linear transformation.
- **M.2.** [15 points] Prove either half of Theorem ILTB: Suppose that $T: U \to V$ is a linear transformation and $B = \{\vec{u}_1, \vec{u}_2, \cdots, \vec{u}_n\}$ is a basis for U. Then T is injective if and only if the set $C = \{T(\vec{u}_1), T(\vec{u}_2), \cdots, T(\vec{u}_n)\}$ is linearly independent.
- **M.3.** [15 points] Prove that if A is diagonalizable, then A^{-1} is diagonalizable.
- **M.4.** [15 points] Prove that if U and V are vector spaces, W is a subspace of V and $T: U \to V$ is a linear transformation, then $T^{-1}(W)$ is a subspace of U. (The preimage of W is a subspace of U.)

Do any two (2) of these "Other" problems

- **T.1.** [15 points] If $T: V \to V$ is a linear transformation, prove that $(T \circ T)(\vec{v}) = \vec{0}$ for every vector $\vec{v} \in V$ if and only if $R(T) \subseteq K(T)$ (the range of T is a subset of the kernel of T)
- **T.2.** [15 points] Let $B = \{1, x, x^2\}$ be the standard basis of P_2 , f(x) = 2+x, and $V = \{g \in P_2 : \langle \rho_B(g), \rho_B(f) \rangle = 0$ Find a basis for the vector space V (you do not have to show that V is a subspace of P_2 – just find a basis.)

T.3. [5, 10 points] Let V be a vector space and $Z = \left\{ \vec{0}_V \right\}$. Define a function $I_Z : Z \to V$ by $I_Z \left(\vec{0}_V \right) = \vec{0}_V$.

- 1. Prove that I_Z is a linear transformation. (You need not prove that Z is a vector space.)
- 2. Prove that $T: V \to V$ is injective if and only if $K(T) \subseteq R(I_Z)$ (the kernel of T is a subset of the range of I_Z .)

$$\vec{0} \xrightarrow{I_Z} V \xrightarrow{T} V$$