$\mathbf{Exam} \ 4$

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

- **C.1.** [15 points] Verify that $T: P_2 \to P_2$ defined by T(p(x)) = (x+2)p'(x) is a linear transformation.
- **C.2.** [15 points] Compute the matrix representation $M_{B,B}^T$ of the linear transformation $T: M_{22} \to M_{22}$ defined by $T(A) = A + A^t$. Use $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and the basis $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$

C.3. [15 points] Define a linear transformation $T : \mathbf{C}^2 \to \mathbf{C}^2$ by $T\left(a\begin{bmatrix} 2\\1 \end{bmatrix} + b\begin{bmatrix} 1\\-1 \end{bmatrix}\right) = a\begin{bmatrix} 6\\3 \end{bmatrix} + b\begin{bmatrix} -3\\3 \end{bmatrix}$. Find a matrix A with the property that $T(\vec{x}) = A\vec{x}$ for every vector $\vec{x} \in \mathbf{C}^2$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [10, 10 points] Suppose $T: U \to V$ and $S: V \to W$ are linear transformations.

- 1. Prove the range of $S \circ T$ is a subset of the range of S. That is, prove $R(S \circ T) \subseteq R(S)$.
- 2. Prove the kernel of T is a subset of the kernel of $(S \circ T)$. That is, prove ker $(T) \subseteq \text{ker} (S \circ T)$.
- **M.2.** [20 points] Suppose $T : U \to V$ and $S : U \to V$ are linear transformations and recall that the function $T + S : U \to V$ is defined by $(T + S)(\vec{u}) = T(\vec{u}) + S(\vec{u})$ for all $\vec{u} \in U$. Prove that T + S is a linear transformation.
- **M.3.** [20 points] Prove the theorem: if $T: U \to V$ is an injective linear transformation and dim $(U) = \dim(V) = n$ then T is an isomorphism.

Do any two (2) of these "Other" problems

- **T.1.** [15 points] Prove that if $T: V \to V$ and $Z: V \to V$ are linear transformations where $T \circ T \circ T \circ T = Z$ and $Z(\vec{v}) = \vec{0}$ for every $\vec{v} \in V$, then T is not invertible.
- **T.2.** [15 points] Suppose $T : U \to V$ and $S : V \to U$ are linear transformations and dim $(U) > \dim(V)$. Prove $S \circ T$ cannot be the identity map $I_U : U \to U$.

- **T.3.** [15 points] Prove that if W is a subspace of U and $T : U \to V$ is a linear transformation, then $T(W) = \{T(\vec{w}) : \vec{w} \in W\}$ is a subspace of V.
- **T.4.** [15 points] Prove that if X is a subspace of V and $T: U \to V$ is a linear transformation, then $T^{-1}(X) = \{\vec{u} \in U : T(\vec{u}) \in X\}$ is a subspace of U.