Exam 4

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

C.1. [15 points] Verify that $T: P_{2} \rightarrow P_{2}$ defined by $T(p(x))=(x+2) p^{\prime}(x)$ is a linear transformation.
C.2. [15 points] Compute the matrix representation $M_{B, B}^{T}$ of the linear transformation $T: M_{22} \rightarrow M_{22}$ defined by $T(A)=A+A^{t}$. Use $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and the basis $B=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right]\right\}$
C.3. [15 points] Define a linear transformation $T: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ by $T\left(a\left[\begin{array}{l}2 \\ 1\end{array}\right]+b\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=a\left[\begin{array}{l}6 \\ 3\end{array}\right]+$ $b\left[\begin{array}{c}-3 \\ 3\end{array}\right]$. Find a matrix A with the property that $T(\vec{x})=A \vec{x}$ for every vector $\vec{x} \in \mathbf{C}^{2}$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [10, 10 points] Suppose $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations.

1. Prove the range of $S \circ T$ is a subset of the range of S. That is, prove $R(S \circ T) \subseteq R(S)$.
2. Prove the kernel of T is a subset of the kernel of $(S \circ T)$. That is, prove $\operatorname{ker}(T) \subseteq \operatorname{ker}(S \circ T)$.
M.2. [20 points] Suppose $T: U \rightarrow V$ and $S: U \rightarrow V$ are linear transformations and recall that the function $T+S: U \rightarrow V$ is defined by $(T+S)(\vec{u})=T(\vec{u})+S(\vec{u})$ for all $\vec{u} \in U$. Prove that $T+S$ is a linear transformation.
M.3. [20 points] Prove the theorem: if $T: U \rightarrow V$ is an injective linear transformation and $\operatorname{dim}(U)=$ $\operatorname{dim}(V)=n$ then T is an isomorphism.

Do any two (2) of these "Other" problems

T.1. [15 points] Prove that if $T: V \rightarrow V$ and $Z: V \rightarrow V$ are linear transformations where $T \circ T \circ T \circ T=Z$ and $Z(\vec{v})=\overrightarrow{0}$ for every $\vec{v} \in V$, then T is not invertible.
T.2. [15 points] Suppose $T: U \rightarrow V$ and $S: V \rightarrow U$ are linear transformations and $\operatorname{dim}(U)>$ $\operatorname{dim}(V)$. Prove $S \circ T$ cannot be the identity map $I_{U}: U \rightarrow U$.
T.3. [15 points] Prove that if W is a subspace of U and $T: U \rightarrow V$ is a linear transformation, then $T(W)=\{T(\vec{w}): \vec{w} \in W\}$ is a subspace of V.
T.4. [15 points] Prove that if X is a subspace of V and $T: U \rightarrow V$ is a linear transformation, then $T^{-1}(X)=\{\vec{u} \in U: T(\vec{u}) \in X\}$ is a subspace of U.

