I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Define all of the following.

D.1. [8 points] Linear Transformation $T: U \rightarrow V$ (where U and V are vector spaces).
D.2. [8 points] Surjective linear transformation $T: U \rightarrow V$
D.3. [9 points] The coordinate transformation ρ_{B} where $B=\left\{\vec{b}_{1}, \cdots, \vec{b}_{n}\right\}$ is a basis for the vector space V.

Do one (1) of these "Computational" problems

C.1. $[8,7$ points $]$ Professor Beezer has proven a theorem that tells us the subset $S=\left\{1+x, 2-x+x^{2}, 3+x^{3}, 1+2 x^{2}\right.$ of P_{3} is linearly independent if and only if the corresponding set of coordinate vectors relative to the standard basis of P_{3} are linearly independent in \mathbf{C}^{4}.

1. Compute those coordinate vectors and show the set of them is linearly independent in \mathbf{C}^{4}.
2. Compute the coordinate vector of x^{3} relative to the basis $B=\left\{1+x, 2-x+x^{2}, 3+x^{3}, 1+2 x^{2}+3 x^{3}\right\}$ of P_{4}.
C.2. [15 points] Find a basis for the range of the linear transformation $T: P_{2} \rightarrow C^{3}$ defined by $T(f)=$ $\left[\begin{array}{c}f(0) \\ f^{\prime}(1) \\ f(2)\end{array}\right]$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 Points] Let V be a vector space with dimension n and $B=\left\{\vec{b}_{1}, \cdots, \vec{b}_{n}\right\}$ a basis for V. Prove Theorem VRLT from the textbook.
Theorem: The function $\rho_{B}: V \rightarrow \mathbf{C}^{n}$ is a linear transformation.
M.2. [15 Points] Prove Theorem ILVLT from the textbook.

Theorem: Suppose that $T: U \rightarrow V$ is an invertible linear transformation. Then the function $T^{-1}: V \rightarrow U$ is a linear transformation.
M.3. [15 Points] Prove Theorem CSLTS from the textbook. Suppose that $T: U \rightarrow V$ and $S: V \rightarrow W$ are both surjective linear transformations. Then $(S \circ T): U \rightarrow W$ is a surjective linear transformation. You may use, without proving it, the fact that $S \circ T$ is a linear transformation.

Do two (2) of these "Other" problems

T.1. [15 Points] Prove the following.

If $T: U \rightarrow V$ is a linear transformation and X is a subspace of V, then $T^{-1}(X)=\{\vec{u} \in U: T(\vec{u}) \in X\}$ is a subspace of U.
T.2. [15 Points] Suppose $T: U \rightarrow V$ is a function that satisfies the single condition $T(\alpha \vec{x}+\vec{y})=\alpha T(\vec{x})+$ $T(\vec{y})$ for every \vec{x}, \vec{y} in U and every α in \mathbf{C}. Prove that T must be a linear transformation.
T.3. [15 Points] Let B be any fixed invertible matrix in $M_{n n}$.It can then be shown (but you don't have to show it) that the function $T: M_{n n} \rightarrow M_{n n}$ defined by $T(A)=B^{-1} A B$ is a linear transformation. Determine, with proof, whether or not this function T is

1. Injective
2. Surjective.
