Exam 3

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of these "Computational" problems

- **C.1.** [15 points] If V is a subspace of \mathbf{C}^n then V^{\perp} is defined to be the set $V^{\perp} = \left\{ \vec{x} \in \mathbf{C}^n \mid \forall \vec{v} \in V \quad \langle \vec{x}, \vec{v} \rangle = \vec{0} \right\}$. The is, V^{\perp} is the set of all vectors in \mathbf{C}^n that are orthogonal to every vector in V.
 - 1. Show that V^{\perp} is a subspace of \mathbf{C}^n .
- **C.2.** [15 points] Express $4-t-t^2$ as a linear combination of the vectors in $S = \{1+t^2, t+t^2, 1+2t+t^2\}$.

Do one (1) of these "In Class, Text, or Homework" problems

- 1. [15 points] Show that $C(AB) \subseteq C(A)$. Here, C(A) is the column space of matrix A.
- 2. [15 points] Prove that if matrix A is diagonalizable then A^3 is diagonalizable.

Do any two (2) of these "Other" problems

- 1. [20 Points] Prove that if A, B are matrices for which the product AB is defined, then $\eta(B) \leq \eta(AB)$. Here $\eta(A)$ is the nullity of A.
- 2. [20 Points] Let A be an $n \times n$ matrix and let λ be a nonzero eigenvalue of A. Show that if \vec{x} is an eigenvector corresponding to λ then \vec{x} is in the column space of A.
- 3. [20 Points] Prove the following by contradiction. If λ and ρ are two distinct (not equal) eigenvalues of the square matrix A, then the intersection of the eigenspaces for these two eigenvalues is trivial. That is, $E_A(\lambda) \cap E_A(\rho) = \left\{\vec{0}\right\}$.

Definitions

1. [15 points] Given a set V and an addition and scalar multiplication for elements in V, there are 10 properties that must hold for V to be a vector space. List those properties. Give the actual mathematical statements of the properties rather than the names of the properties. For example: write $\alpha (\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ instead of saying "scalar multiplication distributes over vector addition".

Useful information

- 1. $\vec{x} \in N(A)$ iff $A\vec{x} = \vec{0}$
- 2. $\vec{y} \in C(A)$ iff there exists an \vec{x} with $A\vec{x} = \vec{y}$