Exam 3

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of these "Computational" problems

C.1. [15 points] If V is a subspace of \mathbf{C}^{n} then V^{\perp} is defined to be the set $V^{\perp}=\left\{\vec{x} \in \mathbf{C}^{n} \mid \forall \vec{v} \in V \quad\langle\vec{x}, \vec{v}\rangle=\overrightarrow{0}\right\}$. Tha is, V^{\perp} is the set of all vectors in \mathbf{C}^{n} that are orthogonal to every vector in V.

1. Show that V^{\perp} is a subspace of \mathbf{C}^{n}.
C.2. [15 points] Express $4-t-t^{2}$ as a linear combination of the vectors in $S=\left\{1+t^{2}, t+t^{2}, 1+2 t+t^{2}\right\}$.

Do one (1) of these "In Class, Text, or Homework" problems

1. [15 points] Show that $C(A B) \subseteq C(A)$. Here, $C(A)$ is the column space of matrix A.
2. [15 points] Prove that if matrix A is diagonalizable then A^{3} is diagonalizable.

Do any two (2) of these "Other" problems

1. [20 Points] Prove that if A, B are matrices for which the product $A B$ is defined, then $\eta(B) \leq \eta(A B)$. Here $\eta(A)$ is the nullity of A.
2. [20 Points] Let A be an $n \times n$ matrix and let λ be a nonzero eigenvalue of A. Show that if \vec{x} is an eigenvector corresponding to λ then \vec{x} is in the column space of A.
3. [20 Points] Prove the following by contradiction. If λ and ρ are two distinct (not equal) eigenvalues of the square matrix A, then the intersection of the eigenspaces for these two eigenvalues is trivial. That is, $E_{A}(\lambda) \cap E_{A}(\rho)=\{\overrightarrow{0}\}$.

Definitions

1. [15 points] Given a set V and an addition and scalar multiplication for elements in V, there are 10 properties that must hold for V to be a vector space. List those properties. Give the actual mathematical statements of the properties rather than the names of the properties. For example: write $\alpha(\vec{x}+\vec{y})=\alpha \vec{x}+\alpha \vec{y}$ instead of saying "scalar multiplication distributes over vector addition".

Useful information

1. $\vec{x} \in N(A)$ iff $A \vec{x}=\overrightarrow{0}$
2. $\vec{y} \in C(A)$ iff there exists an \vec{x} with $A \vec{x}=\vec{y}$
