Exam 3

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of the following of these "Computational" problems

- C.1. [15 points] Show that the set $W = \{p \in P^4 \mid p'' + 2p' + p = z\}$ is a subspace of P^4 . Here, z is the polynomial $z(t) = 0t^4 + 0t^3 + 0t^2 + 0t + 0$.
- **C.2.** [15 points] The matrix $A = \begin{bmatrix} 25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14 \end{bmatrix}$ has $\lambda = 1$ as an eigenvalue. Find a basis for the eigenspace corresponding to this eigenvalue.
- C.3. [15 points] What is the dimension of the subspace of P^4 spanned by $T = \{x^3 3x + 1, x^4 6x + 3, x^4 2x^3 + 1\}$

C.4. [7,8 points] Given $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

1. Prove that p_A(x) = x² - Trace (A) x + det (A)
2. If λ₁, λ₂ are the eigenvalues of A, then Trace (A) = λ₁ + λ₂ and det (A) = λ₁λ₂.

Do any two (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 points] Given a square matrix A satisfying $A^3 = A$ show that the only possible eigenvalues for A are 0 and ± 1 .
- **M.2.** [15 points] Suppose that A is an $m \times n$ matrix and that $\vec{b} \in \mathbf{C}^m$. Prove that the linear system $LS(A, \vec{b})$ is consistent if and only if $r(A) = r([A | \vec{b}])$.
- **M.3.** [15 points] Let A be a particular square matrix of size n. Show that the set $W = \{B \in M_{nn} \mid AB = BA\}$ is a subspace of M_{nn} .

Do any two (2) of these "Other" problems

- **T.1.** [15 points] Let V be a vector space and S a subset of V. Prove that S is a subspace of V if and only if $S = \langle S \rangle$.
- **T.2.** [15 points] If A and B are both $n \times n$ matrices and B is nonsingular, prove that if λ is an eigenvalue of the product matrix C = AB, then λ is also an eigenvalue of D = BA.[Hint: what would the corresponding eigenvectors look like?]
- **T.3.** [15 points] Extend the result in problem T.2. above by proving that λ is an eigenvalue of D = BA even if B is singular.
- **T.4.** [15 points] Given a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ of \mathbb{C}^n and a matrix A for which $\{\vec{v}_{r+1}, \dots, \vec{v}_n\}$ is a basis for the null space of A. Prove **one** (1) of the following
 - 1. The set $\{A\vec{v}_1, \cdots, A\vec{v}_r\}$ spans the column space of A.
 - 2. The set $\{A\vec{v}_1, \cdots, A\vec{v}_r\}$ is linearly independent in \mathbb{C}^n .