Exam 3

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of the following of these "Computational" problems

C.1. [15 points] Show that the set $W=\left\{p \in P^{4} \mid p^{\prime \prime}+2 p^{\prime}+p=z\right\}$ is a subspace of P^{4}. Here, z is the polynomial $z(t)=0 t^{4}+0 t^{3}+0 t^{2}+0 t+0$.
C.2. [15 points] The matrix $A=\left[\begin{array}{ccc}25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14\end{array}\right]$ has $\lambda=1$ as an eigenvalue. Find a basis for the eigenspace corresponding to this eigenvalue.
C.3. [15 points] What is the dimension of the subspace of P^{4} spanned by $T=\left\{x^{3}-3 x+1, x^{4}-6 x+3, x^{4}-2 x^{3}+1\right.$
C.4. [7,8 points] Given $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

- 1. Prove that $p_{A}(x)=x^{2}-\operatorname{Trace}(A) x+\operatorname{det}(A)$

2. If λ_{1}, λ_{2} are the eigenvalues of A, then $\operatorname{Trace}(A)=\lambda_{1}+\lambda_{2}$ and $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Given a square matrix A satisfying $A^{3}=A$ show that the only possible eigenvalues for A are 0 and ± 1.
M.2. [15 points] Suppose that A is an $m \times n$ matrix and that $\vec{b} \in \mathbf{C}^{m}$. Prove that the linear system $L S(A, \vec{b})$ is consistent if and only if $r(A)=r([A \mid \vec{b}])$.
M.3. [15 points] Let A be a particular square matrix of size n. Show that the set $W=\left\{B \in M_{n n} \mid A B=B A\right\}$ is a subspace of $M_{n n}$.

Do any two (2) of these "Other" problems

T.1. [15 points] Let V be a vector space and S a subset of V. Prove that S is a subspace of V if and only if $S=\langle S\rangle$.
T.2. [15 points] If A and B are both $n \times n$ matrices and B is nonsingular, prove that if λ is an eigenvalue of the product matrix $C=A B$, then λ is also an eigenvalue of $D=B A$.[Hint: what would the corresponding eigenvectors look like?]
T.3. [15 points] Extend the result in problem T.2. above by proving that λ is an eigenvalue of $D=B A$ even if B is singular.
T.4. [15 points] Given a basis $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ of \mathbf{C}^{n} and a matrix A for which $\left\{\vec{v}_{r+1}, \cdots, \vec{v}_{n}\right\}$ is a basis for the null space of A. Prove one (1) of the following

1. The set $\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{r}\right\}$ spans the column space of A.
2. The set $\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{r}\right\}$ is linearly independent in \mathbf{C}^{n}.
