Exam 3

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do and two (2) of these "Computational" problems

C.1. [20 points] Prove that the set $V=\left\{A \in M_{44}: A^{3}-2 A^{2}+3 I_{4}=O_{4}\right\}$ is a subspace of M_{44}.
C.2. [20 points] Find a basis for the subspace V of P_{3} given by $V=\left\{p \in P_{3}: p(1)=0\right.$ and $\left.p(-1)=0\right\}$
C.3. [20 points] Given the matrix $A=\left[\begin{array}{ccc}25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14\end{array}\right]$, and the fact that $P_{A}(x)=-\left(x^{3}-4 x^{2}+5 x-2\right)$.

Compute the eigenspace $E_{A}(\lambda)$ where λ is the smallest eigenvalue of A.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Let U be a vector space and V, W subspaces of U of dimension 2 and 3 respectively. Let $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis of V and $C=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ a basis for W.If the only vector common to both V and W is $\overrightarrow{0}$ prove that the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is linearly independent.
M.2. [15 points] Prove Theorem ETM: Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of A^{t}.
M.3. [15 points] Prove Theorem SMZE: Suppose A is a square matrix. Then A is singular if and only if $\lambda=0$ is an eigenvalue of A. [You may NOT use Beezer's theorem that a matrix is non-singular if and only if 0 is not an eigenvalue of A.]

Do any two (2) of these "Other" problems

T.1. [15 points] A square matrix A is idempotent if $A^{2}=A$. Show that the numbers 0 and 1 are the only possible eigenvalues of an idempotent matrix A.
T.2. [15 points] Prove that if U and W are both subspaces of a vector space V then the intersection, $U \cap W=\{\vec{x} \mid \vec{x} \in U$ and $\vec{x} \in W\}$, is also a subspace of V.
T.3. [15 points] Let A and B be $n \times n$ matrices. Show that if $\lambda=0$ is an eigenvalue of $A B$, then it is also an eigenvalue of $B A$.
T.4. [15 points] Let A be and $n \times n$ matrix and let λ be a nonzero eigenvalue of A. Show that if \vec{x} is an eigenvector corresponding to λ then \vec{x} is in the column space of A

