Exam 4

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

You must do this problem.

D.1. [1 point each] Given a set V and an addition and scalar multiplication for elements in V, there are 10 properties that must hold for V to be a vector space. List those properties. Give mathematical statements of the properties not the names of the properties.

Do two (2) of these "Computational" problems

C.1. [15 points] Show that the set of all vectors in \mathbf{C}^{4} whose coordinates sum to zero is a subspace of \mathbf{C}^{4}.
C.2. [15 points] Prove that the set $S=\left\{1+t^{2}, t+t^{2}, 1+2 t-t^{2}\right\}$ is a basis for P_{2}.
C.3. [15 points] Let V be the subspace of \mathbf{C}^{4} with basis $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]\right\}$. Find a basis for V^{\perp}.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [8, 7 points each] Do both of the following.

1. Give an example of a 2×2 matrix A for which $A \neq O_{2}$ and $A^{2}=O_{2}$.
2. Given that A and B are both $n \times n$ matrices. Prove that if \vec{x} is an eigenvector for both A and B, then \vec{x} is an eigenvector for $A+B$
M.2. [15 points] Given a basis $\left\{\vec{v}_{1}, \cdots, \vec{v}_{n}\right\}$ of \mathbf{C}^{n} and a matrix A for which $\left\{\vec{v}_{r+1}, \cdots, \vec{v}_{n}\right\}$ is a basis for the null space of A. Prove the set $\left\{A \vec{v}_{1}, \cdots, A \vec{v}_{r}\right\}$ spans the column space of A.
M.3. [15 points] Let U be a vector space and V, W subspaces of U of dimension 2 and 3 respectively. Let $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a basis of V and $C=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ a basis for W.If the only vector common to both V and W is $\overrightarrow{0}$ prove that the set $B \cup C=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is linearly independent.

Do any two (2) of these "Other" problems

T.1. [12, 3 points each] A square matrix of size n is said to be nilpotent if there is a positive integer s for which $A^{s}=O_{n}$. Prove that if A is nilpotent, then

1. $\lambda=0$ is an eigenvalue of A and is the only eigenvalue of A.
2. Use this information to determine the characteristic polynomial of $A, p_{A}(x)$.
T.2. [15 points] Prove that if U and W are both subspaces of a vector space V then the intersection, $U \cap W$, is also a subspace of V.
T.3. [3 points each] Suppose V is a vector space of dimension 7 and W is a subspace of dimension 4 .
3. (a) True or False
(b) Every basis for W can be extended to a basis for V by adding three more vectors.
(c) Every basis for V can be reduced to a basis for W by removing three vectors. Suppose now that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}, \vec{v}_{6}, \vec{v}_{7}, \vec{v}_{8}, \vec{v}_{9}$ are nine vectors in \mathbf{C}^{7}.

Choose your answer.

(d) Those vectors (are)(are not)(might be) linearly independent.
(e) They (do)(do not)(might) span \mathbf{C}^{7}.
(f) If those vectors are the columns of matrix A, then $A \vec{x}=\vec{b}$ (has)(does not have)(might not have) a solution.

