$\mathbf{Exam} \ 4$

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

You must do this problem.

D.1. [1 point each] Given a set V and an addition and scalar multiplication for elements in V, there are 10 properties that must hold for V to be a vector space. List those properties. Give mathematical statements of the properties not the names of the properties.

Do two (2) of these "Computational" problems

- C.1. [15 points] Show that the set of all vectors in \mathbf{C}^4 whose coordinates sum to zero is a subspace of \mathbf{C}^4 .
- **C.2.** [15 points] Prove that the set $S = \{1 + t^2, t + t^2, 1 + 2t t^2\}$ is a basis for P_2 .
- **C.3.** [15 points] Let V be the subspace of \mathbf{C}^4 with basis $\left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \right\}$. Find a basis for V^{\perp} .

Do any two (2) of these "In Class, Text, or Homework" problems

- M.1. [8,7 points each] Do both of the following.
 - 1. Give an example of a 2×2 matrix A for which $A \neq O_2$ and $A^2 = O_2$.
 - 2. Given that A and B are both $n \times n$ matrices. Prove that if \vec{x} is an eigenvector for both A and B, then \vec{x} is an eigenvector for A + B
- **M.2.** [15 points] Given a basis $\{\vec{v}_1, \dots, \vec{v}_n\}$ of \mathbb{C}^n and a matrix A for which $\{\vec{v}_{r+1}, \dots, \vec{v}_n\}$ is a basis for the null space of A. Prove the set $\{A\vec{v}_1, \dots, A\vec{v}_r\}$ spans the column space of A.
- **M.3.** [15 points] Let U be a vector space and V, W subspaces of U of dimension 2 and 3 respectively. Let $B = \{\vec{v}_1, \vec{v}_2\}$ be a basis of V and $C = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ a basis for W.If the only vector common to both V and W is $\vec{0}$ prove that the set $B \cup C = \{\vec{v}_1, \vec{v}_2, \vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is linearly independent.

Do any two (2) of these "Other" problems

- **T.1.** [12,3 points each] A square matrix of size n is said to be **nilpotent** if there is a positive integer s for which $A^s = O_n$. Prove that if A is nilpotent, then
 - 1. $\lambda = 0$ is an eigenvalue of A and is the only eigenvalue of A.
 - 2. Use this information to determine the characteristic polynomial of A, $p_A(x)$.
- **T.2.** [15 points] Prove that if U and W are both subspaces of a vector space V then the intersection, $U \cap W$, is also a subspace of V.
- **T.3.** [3 points each] Suppose V is a vector space of dimension 7 and W is a subspace of dimension 4.
 - 1. (a) **True or False**
 - (b) Every basis for W can be extended to a basis for V by adding three more vectors.
 - (c) Every basis for V can be reduced to a basis for W by removing three vectors. Suppose now that v
 ₁, v
 ₂, v
 ₃, v
 ₄, v
 ₅, v
 ₆, v
 ₇, v
 ₈, v
 ₉ are nine vectors in C⁷. Choose your answer.
 - (d) Those vectors (are)(are not)(might be) linearly independent.
 - (e) They (do)(do not)(might) span \mathbb{C}^7 .
 - (f) If those vectors are the columns of matrix A, then $A\vec{x} = \vec{b}$ (has)(does not have)(might not have) a solution.