Exam 3

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

C.1. [15 points] The matrix $A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$ has characteristic polynomial $p_A(x) = (x-3)(x-1)(x-2)^2$. Determine a basis for the eigenspace $E_A(2)$.

- **C.2.** [15 points] Let $V = \{p \in P_3 \mid p(1) = 0, p'(2) = 0\}$. Show that V is a subspace of P_3 .
- **C.3.** [15 points] Find a basis for the subspace $V = \{p \in P_3 \mid p(1) = 0, p'(2) = 0\}$ of P_3 .

Do any two (2) of these "In Class, Text, or Homework" problems

- M.1. [20 points] Prove if A is diagonalizable and B is similar to A then B is diagonalizable.
- **M.2.** [20 points] Suppose that A is a square matrix of size n. Prove that the constant term of the characteristic polynomial of A is equal to the determinant of A.
- **M.3.** [20 points] Use a proof by contradiction to show that a single vector can't be an eigenvector of a square matrix A for two different eigenvalues.
- **M.4.** [20 points] Let V be a subspace of M_{nn} and let S be a specific invertible matrix in M_{nn} . Prove that the set $W = \{C \in M_{nn} \mid \text{there is a matrix } A \text{ in } V \text{ with } C = S^{-1}AS\}$ is also a subspace of M_{nn} .

Do any two (2) of these "Other" problems

- **T.1.** [15 points] Let A be an $n \times n$ matrix and $B = A^2 2A + I_n$. show that if $\lambda = 1$ is an eigenvalue of A then B must be singular.
- **T.2.** [15 points] Let $B = S^{-1}AS$ and let \vec{x} be an eigenvector of B corresponding to the eigenvalue λ . Show that $S\vec{x}$ is an eigenvector of A corresponding to λ .
- **T.3.** [15 points] Suppose that A is a 6×6 matrix with exactly two distinct eigenvalues, 2 and -9 and let $E_A(2)$ and $E_A(-9)$ be the corresponding eigenspaces, respectively. Write all possible characteristic polynomials of A that are consistent with dim $(E_A(2)) = 4$

T.4. [15 points] Let A be an $n \times n$ matrix with eigenvalue λ . If the matrix $A - \lambda I_n$ has rank r, what is the dimension of the eigenspace $E_A(\lambda)$? Explain.