Exam 3

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

C.1. [15 points] The matrix $A=\left[\begin{array}{llll}3 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$ has characteristic polynomial $p_{A}(x)=(x-3)(x-1)(x-2)^{2}$. Determine a basis for the eigenspace $E_{A}(2)$.
C.2. [15 points] Let $V=\left\{p \in P_{3} \mid p(1)=0, p^{\prime}(2)=0\right\}$. Show that V is a subspace of P_{3}.
C.3. [15 points] Find a basis for the subspace $V=\left\{p \in P_{3} \mid p(1)=0, p^{\prime}(2)=0\right\}$ of P_{3}.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [20 points] Prove if A is diagonalizable and B is similar to A then B is diagonalizable.
M.2. [20 points] Suppose that A is a square matrix of size n. Prove that the constant term of the characteristic polynomial of A is equal to the determinant of A.
M.3. [20 points] Use a proof by contradiction to show that a single vector can't be an eigenvector of a square matrix A for two different eigenvalues.
M.4. [20 points] Let V be a subspace of $M_{n n}$ and let S be a specific invertible matrix in $M_{n n}$. Prove that the set $W=\left\{C \in M_{n n} \mid\right.$ there is a matrix A in V with $\left.C=S^{-1} A S\right\}$ is also a subspace of $M_{n n}$.

Do any two (2) of these "Other" problems

T.1. [15 points] Let A be an $n \times n$ matrix and $B=A^{2}-2 A+I_{n}$. show that if $\lambda=1$ is an eigenvalue of A then B must be singular.
T.2. [15 points] Let $B=S^{-1} A S$ and let \vec{x} be an eigenvector of B corresponding to the eigenvalue λ. Show that $S \vec{x}$ is an eigenvector of A corresponding to λ.
T.3. [15 points] Suppose that A is a 6×6 matrix with exactly two distinct eigenvalues, 2 and -9 and let $E_{A}(2)$ and $E_{A}(-9)$ be the corresponding eigenspaces, respectively. Write all possible characteristic polynomials of A that are consistent with $\operatorname{dim}\left(E_{A}(2)\right)=4$
T.4. [15 points] Let A be an $n \times n$ matrix with eigenvalue λ. If the matrix $A-\lambda I_{n}$ has rank r, what is the dimension of the eigenspace $E_{A}(\lambda)$? Explain.

