Smith

Math 290

Exam 3

November 13, 2008

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do one (1) of these "Computational" problems

C.1. [8, 2 points] Given the matrix $A = \begin{bmatrix} 25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14 \end{bmatrix}$ and the fact that $P_A(x) = x^3 - 4x^2 + 5x - 2 = (x-2)(x-1)^2$.

- 1. List the distinct eigenvalues, their algebraic and geometric multiplicities, and their corresponding eigenspaces.
- 2. Find a diagonal matrix D that is similar to A.
- C.2. [10 points] Let $S = \{1 + 2x + x^2, 2 + 5x, 3 + 7x + x^2, 1 + x + 3x^2\} \subseteq P_2$. Note that S has four elements. Find the dimension of $\langle S \rangle$.

Do this "Subspace" problem

S.1. [15 Points] Let $V = \{p \in P_3: p''(x) - 4p'(x) + xp(x) = 0\}$. Show that V is a subspace of P_3 .

Do this "Proof by Contradiction" problem

PbC.1. [15 Points] Suppose that A is a square matrix. Use a proof by contradiction to show that a single vector may not be an eigenvector of A for two different eigenvalues.

Do any two (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 Points] Prove that if the matrix A is diagonalizable, then A is similar to A^t .
- **M.2.** [15 Points] Suppose that the set $S = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is a linearly independent subset of a vector space W. Determine whether or not the set $T = \{2\vec{w}_1 \vec{w}_3, \vec{w}_1 2\vec{w}_2 + 3\vec{w}_3, \vec{w}_2 + \vec{w}_3\}$ is linearly independent.
- **M.3.** [15 Points] Given a linearly independent set $S = {\vec{v_1}, \vec{v_2}}$ in a vector space V. Prove that the set $T = {\alpha \vec{v_1}, \vec{v_2}}$ is linearly independent if and only if $\alpha \neq 0$.

Do two (2) of these "Other" problems

- **T.1.** [15 Points] Given the subspace $V = \left\{ \vec{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbf{C}^3 : 2x_1 + 3x_2 x_3 = 0 \right\}$ of \mathbf{C}^3 . Find, with proof, a subspace W of \mathbf{C}^3 for which $\mathbf{C}^3 = V \oplus W$.
- **T.2.** [15 Points] If A and B are $n \times n$ matrices and A is invertible, show that AB is similar to BA. [This problem is **not** to show that A is similar to B.]
- **T.3.** [15 Points] Suppose A is a square matrix of size n and $S = {\vec{x_1}, \vec{x_2}, \vec{x_3}, \dots, \vec{x_n}}$ is a basis of \mathbb{C}^n . Prove that A is nonsingular if and only if $T = {A\vec{x_1}, A\vec{x_2}, A\vec{x_3}, \dots, A\vec{x_n}}$ is a basis of \mathbb{C}^n .