I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do one (1) of these "Computational" problems

C.1. $\left[8,2\right.$ points] Given the matrix $A=\left[\begin{array}{ccc}25 & -8 & 30 \\ 24 & -7 & 30 \\ -12 & 4 & -14\end{array}\right]$ and the fact that $P_{A}(x)=x^{3}-4 x^{2}+5 x-2=$ $(x-2)(x-1)^{2}$.

1. List the distinct eigenvalues, their algebraic and geometric multiplicities, and their corresponding eigenspaces.
2. Find a diagonal matrix D that is similar to A.
C.2. [10 points] Let $S=\left\{1+2 x+x^{2}, 2+5 x, 3+7 x+x^{2}, 1+x+3 x^{2}\right\} \subseteq P_{2}$.Note that S has four elements. Find the dimension of $\langle S\rangle$.

Do this "Subspace" problem

S.1. [15 Points] Let $V=\left\{p \in P_{3}: p^{\prime \prime}(x)-4 p^{\prime}(x)+x p(x)=0\right\}$.Show that V is a subspace of P_{3}.

Do this "Proof by Contradiction" problem

PbC.1. [15 Points] Suppose that A is a square matrix. Use a proof by contradiction to show that a single vector may not be an eigenvector of A for two different eigenvalues.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 Points] Prove that if the matrix A is diagonalizable, then A is similar to A^{t}.
M.2. [15 Points] Suppose that the set $S=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is a linearly independent subset of a vector space W. Determine whether or not the set $T=\left\{2 \vec{w}_{1}-\vec{w}_{3}, \vec{w}_{1}-2 \vec{w}_{2}+3 \vec{w}_{3}, \vec{w}_{2}+\vec{w}_{3}\right\}$ is linearly independent.
M.3. [15 Points] Given a linearly independent set $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ in a vector space V. Prove that the set $T=\left\{\alpha \vec{v}_{1}, \vec{v}_{2}\right\}$ is linearly independent if and only if $\alpha \neq 0$.

Do two (2) of these "Other" problems

T.1. [15 Points] Given the subspace $V=\left\{\vec{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbf{C}^{3}: 2 x_{1}+3 x_{2}-x_{3}=0\right\}$ of \mathbf{C}^{3}. Find, with proof, a subspace W of \mathbf{C}^{3} for which $\mathbf{C}^{3}=V \oplus W$.
T.2. [15 Points] If A and B are $n \times n$ matrices and A is invertible, show that $A B$ is similar to $B A$. [This problem is not to show that A is similar to B.]
T.3. [15 Points] Suppose A is a square matrix of size n and $S=\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \cdots, \vec{x}_{n}\right\}$ is a basis of \mathbf{C}^{n}. Prove that A is nonsingular if and only if $T=\left\{A \vec{x}_{1}, A \vec{x}_{2}, A \vec{x}_{3}, \cdots, A \vec{x}_{n}\right\}$ is a basis of \mathbf{C}^{n}.

