Exam 2

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of these "Computational" problems

C.1. [15 points] The vectors \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{3} below form an orthonormal set. Use the Gram-Schmidt procedure to find a vector \vec{u}_{4} so that $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right\}$ is also an orthonormal set.

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right], \vec{v}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

The Gram-Schmidt formula for $i \geq 2$ is

$$
\vec{u}_{i}=\vec{v}_{i}-\left(\frac{<\vec{v}_{i}, \vec{u}_{1}>}{<\vec{u}_{1}, \vec{u}_{1}>}\right) \vec{u}_{1}-\cdots-\left(\frac{<\vec{v}_{i}, \vec{u}_{i-1}>}{<\vec{u}_{i-1}, \vec{u}_{i-1}>}\right) \vec{u}_{i-1}
$$

C.2. [15 points] Given $A=\left[\begin{array}{cccc}1 & 2 & 5 & 2 \\ 0 & -1 & -2 & 1 \\ 3 & -6 & -9 & 18 \\ 0 & 1 & 2 & -1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}4 \\ -2 \\ -12 \\ 2\end{array}\right]$, solve $A \vec{x}=\vec{b}$. Express your solution set using column vector notation.
C.3. [15 points] The matrix $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$ has the property that there is at least one vector \vec{x} for which $A \vec{x}=5 \vec{x}$. Find all such vectors.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Suppose $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a linearly independent set in \mathbf{C}^{9}. Determine if the set of vectors $\left\{2 \vec{v}_{1}+\vec{v}_{2}+3 \vec{v}_{3}, \vec{v}_{2}+5 \vec{v}_{3}, 3 \vec{v}_{1}+\vec{v}_{2}+2 \vec{v}_{3}\right\}$ is linearly dependent or linearly independent.
M.2. [15 points] Prove Theorem MIT: Matrix Inverse of a Transpose. Specifically, prove the statement: Suppose A is an invertible matrix, then A^{t} is invertible.
M.3. [15 points] Do one of the following two problems

1. (a) Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a set of non-zero vectors. Prove that S is linearly dependent, if and only if, one of the vectors in S is a scalar multiple of the other.
(b) Prove the DMAM Distributivity across Matrix Addition vector space property of matrices. Specifically, prove the statment: If $\alpha \in \mathbf{C}$ and $A, B \in M_{m n}$, then $\alpha(A+B)=\alpha A+\alpha B$.

Do any two (2) of these "Other" problems

All of these problems can be done using matrix notation.
T.1. [15 points] Suppose that \vec{x} and \vec{y} are solution vectors to the non-homogeneous linear system of equations $L S(A, \vec{b})$. Prove that $\vec{n}=\vec{x}-\vec{y}$ is a solution vector to the homogeneous system $L S(A, \overrightarrow{0})$.
T.2. [15 points] Suppose A is a square matrix of size n satisfying $A^{2}=A A=O_{n}$. Prove that the only vector \vec{x} satisfying $\left(I_{n}-A\right) \vec{x}=\overrightarrow{0}$ is the zero vector. [Recall that O_{n} is the $n \times n$ zero matrix.]
T.3. [15 points] Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $A B=I_{n}$. Let \vec{b} be a particular vector in \mathbf{C}^{n}. Show that the system of equations $A \vec{x}=\vec{b}$ must be consistent. [Note that neither A nor B is square and so they cannot be invertible.]

