Exam 2

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any two (2) of the following of these "Computational" problems

C.1. [8, 7 points] (Homework Problem M20 from section MO) Suppose $S=\left\{B_{1}, B_{2}, \cdots, B_{p}\right\}$ is a set of matrices from $M_{m n}$.Formulate appropriate definitions for the following terms and give an example of each.

1. (a) A linear combination of the elements of S.
(b) A non-trivial relation of linear dependence on S.
C.2. [15 points] Given the linearly independent set $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 1\end{array}\right]\right\}$, use the GramSchmidt Procedure to generate an orthogonal set $T=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ which has the same span as S. That is, $\langle S\rangle=\langle T\rangle$. [You may use: $\left.\vec{u}_{i}=\vec{v}_{i}-\frac{\left\langle\vec{v}_{i}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right\rangle} \vec{u}_{1}-\frac{\left\langle\vec{v}_{i}, \vec{u}_{2}\right\rangle}{\left\langle\vec{u}_{2}, \vec{u}_{2}\right\rangle} \vec{u}_{2}-\cdots-\frac{\left.\vec{v}_{i}, \vec{u}_{i-1}\right\rangle}{\left\langle\vec{u}_{i-1}, \vec{u}_{i-1}\right\rangle} \vec{u}_{i-1}\right]$
C.3. [8, 7 points] Find two linearly independent sets S, T whose spans equal the column space of matrix $B=\left[\begin{array}{cccc}2 & 3 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ -1 & 2 & 3 & -4\end{array}\right]$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Prove property SMAM of matrices. Specifically, prove If $\alpha, \beta \in \mathbf{C}$ and $A \in M_{m n}$, then $\alpha(\beta A)=(\alpha \beta) A$.
M.2. [15 points] Homework Problem M25 of section MO. Let $U_{33}=\left\{A \in M_{33} \mid[A]_{i j}=0\right.$ whenever $\left.i>j\right\}$. Find a set $R \subseteq M_{33}$ for which the span of R equals $U_{33},\langle R\rangle=U_{33}$.
M.3. [15 points] Prove that if the set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \cdots, \vec{v}_{n}\right\} \subseteq \mathbf{C}^{m}$ is linearly independent, then the set $T=\left\{\vec{v}_{1}-\vec{v}_{2}, \vec{v}_{2}-\vec{v}_{3}, \vec{v}_{3}-\vec{v}_{4}, \cdots, \vec{v}_{n}-\vec{v}_{1}\right\}$ is linearly dependent.

Do any two (2) of these "Other" problems

T.1. [15 points] Use the method of mathematical induction to prove that if $A_{1}, A_{2}, \cdots, A_{n}$ are square matrices of the same size, then $\left(A_{1} A_{2} \cdots A_{n}\right)^{t}=A_{n}^{t} \cdots A_{2}^{t} A_{1}^{t}$ for all integers $n \geq 2$.
T.2. [15 points] Given a singular matrix $A \in M_{n n}$ and a linearly independent set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$ in \mathbf{C}^{n}, prove that it is not the case that the set $\left\{A \vec{v}_{1}, A \vec{v}_{2}, \cdots, A \vec{v}_{n}\right\}$ is also linearly independent. [Hint: consider the matrix B whose columns are the vectors in S.]
T.3. [15 points] In class we proved that if $A \in M_{m n}$ and $B \in M_{n p}$ then the null space of B is contained in the null space of $A B, N(B) \subseteq N(A B)$. Prove that in the special case where A is non-singular, then $N(B)=N(A B)$.

