Exam 2

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Complete the following

D.1. [3 points] Given a finite set of vectors $S \subset \mathbf{C}^{m}$, define the span of S.
D.2. [3 points] Given a matrix A, define the column space of A.
D.3. [4 points] If the matrix A is of size $m \times n$. What is the size of the associated matrix L that is a block in the extended reduced row-echelon form of A.

Do and two (2) of these "Computational" problems

C.1. [15 points] We have four ways to compute the column space of a matrix. Use two of them to write the column space of $A=\left[\begin{array}{ccccc}1 & 1 & 2 & 0 & 1 \\ 2 & 5 & 4 & 6 & -1 \\ 2 & 3 & 4 & 2 & 1\end{array}\right]$ as the span of two different sets neither of which consists of vectors that are columns of A.
C.2. [15 points] Let V be the subset of \mathbf{C}^{4} consisting of all vectors that are orthogonal to both $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 1\end{array}\right]$. Express V as a span.
C.3. [15 points] Give examples of 3×3 matrices A, B neither of which is the zero matrix O but the product $A B=O$.

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Use block multiplication of partitioned matrices to prove the following portion of Theorem $F S$ (Four Subspaces) about the extended echelon form of a matrix.

1. If A is an $m \times n$ matrix and $N=\left[\begin{array}{c|c}C & K \\ \hline O & L\end{array}\right]$ is the extended reduced row-echelon form for A, prove that the null space of L is contained in the column space of A. More precisely, show that $N(L) \subseteq C(A)$.
M.2. [15 points] Prove property DMAM of matrices. Specifically, prove If $\alpha \in \mathbf{C}$ and $A, B \in M_{m n}$, then $\alpha(A+B)=\alpha A+\alpha B$.
M.3. [15 points] In class we proved that if $A \in M_{m n}$ and $B \in M_{n p}$ then the null space of B is contained in the null space of $A B, N(B) \subseteq N(A B)$. Prove that in the special case where A is nonsingular, then $N(B)=N(A B)$.

Do any two (2) of these "Other" problems

T.1. [15 points] Let $S \subseteq \mathbf{C}^{n}$ be a set containing exactly two vectors. Prove that S is linearly dependent if and only if one of the vectors equals a scalar times the other.
T.2. [15 points] Given a non-singular matrix $A \in M_{n n}$ and a linearly independent set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{p}\right\}$ in \mathbf{C}^{n}, prove that the set $\left\{A \vec{v}_{1}, A \vec{v}_{2}, \cdots, A \vec{v}_{n}\right\}$ is also linearly independent.
T.3. [15 points] Prove that if A in an $m \times n$ matrix and B is $n \times p$ then the column space of $A B$ is contained in the column space of A, more precisely, prove that $C(A B) \subseteq C(A)$.

