Exam 2

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of the following

D.1. [5 points] Use correct notation to write an arbitrary relation of linear dependence for the set of vectors $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}\right\}$.
D.2. [5 points] Use correct notation to write the i th entry in the matrix-vector product $A \mathbf{u}$ of the $m \times n$ matrix A having columns $\mathbf{A}_{1}, \mathbf{A}_{2} \cdots, \mathbf{A}_{n}$ with the vector \mathbf{u} of size n.

Do any two (2) of these "Computational" problems
C.1. [15 points] Find the column space of $A=\left[\begin{array}{ccc}2 & 3 & 6 \\ -1 & 4 & -14 \\ 3 & 10 & -2 \\ 3 & -1 & 20 \\ 6 & 9 & 18\end{array}\right]$ in two different ways. For both, write the column space as the span of a linearly independent set of vectors.
C.2. [15 points] The matrix $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$ has the property that $A \vec{x}=5 \vec{x}$ for some vectors \vec{x}. Write the set of such vectors as the span of a linearly independent set.
C.3. [15 points] Consider the following vectors in \mathbf{C}^{4}.

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right], \vec{v}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Find a vector \vec{u}_{4} in \mathbf{C}^{4} so that $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}$ form an orthonormal set.
Useful Information:

1. The set $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is an orthonormal set.
2. The Gram-Schmidt formula is

$$
\vec{u}_{i}=\vec{v}_{i}-\left(\frac{<\vec{v}_{i}, \vec{u}_{1}>}{<\vec{u}_{1}, \vec{u}_{1}>}\right) \vec{u}_{1}-\cdots-\left(\frac{<\vec{v}_{i}, \vec{u}_{i-1}>}{<\vec{u}_{i-1}, \vec{u}_{i-1}>}\right) \vec{u}_{i-1}
$$

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Theorem MIT (Matrix Inverse of a Transpose) in our book says that if A is an invertible matrix, then so is A^{t} and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$. Prove this theorem.
M.2. [15 points] Prove that if A in an $m \times n$ matrix and B is $n \times p$ then the column space of $A B$ is contained in the column space of A. That is, prove $C(A B) \subseteq C(A)$.
M.3. [15 points] Suppose that \mathbf{v}_{1} and \mathbf{v}_{2} are any two vectors from \mathbf{C}^{m}. Prove the following set equality. $\left\langle\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right\rangle=\left\langle\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}\right\rangle$.

Do any two (2) of these "Other" problems

T.1. [15 points] Is it possible to have an invertible 3×3 matrix A with the property that $A^{2}=O_{3}$? Why or why not? (Here O_{3} denotes the 3×3 zero matrix.)
T.2. [15 points] Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $A B=I_{n}$. Let \vec{b} be a particular vector in \mathbf{C}^{n}. Show that the system of equations $A \vec{x}=\vec{b}$ must be consistent.
T.3. [15 points] Our author (Beezer) proved in one of the textbook exercises that if If \vec{u}_{1} and \vec{u}_{2} are both in $\langle S\rangle$, the span of S, then so is the sum $\vec{u}_{1}+\vec{u}_{2}$. Use Beezer's result and the Principle of Mathematical Induction to prove that if $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \cdots, \vec{u}_{n}$ are all in $\langle S\rangle$ then so is the sum $\vec{u}_{1}+\vec{u}_{2}+\vec{u}_{3}+\cdots+\vec{u}_{n}$.
T.4. [15 points] Suppose that \vec{a} and \vec{b} are solution vectors to the non-homogeneous linear system of equations $A \vec{x}=\vec{c}$. Prove that $\vec{a}-\vec{b}$ is a solution vector to the homogeous system $A \vec{x}=\overrightarrow{0}$.

