Exam 2

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of the following

- **D.1.** [5 points] Use correct notation to write an arbitrary relation of linear dependence for the set of vectors $S = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n}$.
- **D.2.** [5 points] Use correct notation to write the *i*th entry in the **matrix-vector product** A**u** of the $m \times n$ matrix A having columns $\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n$ with the vector **u** of size n.

Do any two (2) of these "Computational" problems

C.1. [15 points] Find the column space of $A = \begin{bmatrix} 2 & 3 & 6 \\ -1 & 4 & -14 \\ 3 & 10 & -2 \\ 3 & -1 & 20 \\ 6 & 9 & 18 \end{bmatrix}$ in two different ways. For both, write

the column space as the span of a linearly independent set of vectors.

- **C.2.** [15 points] The matrix $A = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$ has the property that $A \overrightarrow{x} = 5 \overrightarrow{x}$ for some vectors \overrightarrow{x} . Write the set of such vectors as the span of a linearly independent set.
- C.3. [15 points] Consider the following vectors in \mathbb{C}^4 .

$$\vec{u}_1 = \begin{bmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1/2\\ 1/2\\ -1/2\\ -1/2\\ -1/2 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} 1/2\\ -1/2\\ 1/2\\ -1/2 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 1 \end{bmatrix}$$

Find a vector \vec{u}_4 in \mathbf{C}^4 so that $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ form an orthonormal set. Useful Information:

- 1. The set $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ is an **orthonormal** set.
- 2. The Gram-Schmidt formula is

$$\vec{u}_i = \vec{v}_i - \left(\frac{\langle \vec{v}_i, \vec{u}_1 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle}\right) \vec{u}_1 - \dots - \left(\frac{\langle \vec{v}_i, \vec{u}_{i-1} \rangle}{\langle \vec{u}_{i-1}, \vec{u}_{i-1} \rangle}\right) \vec{u}_{i-1}$$

Do any two (2) of these "In Class, Text, or Homework" problems

- **M.1.** [15 points] Theorem MIT (Matrix Inverse of a Transpose) in our book says that if A is an invertible matrix, then so is A^t and $(A^t)^{-1} = (A^{-1})^t$. Prove this theorem.
- **M.2.** [15 points] Prove that if A in an $m \times n$ matrix and B is $n \times p$ then the column space of AB is contained in the column space of A. That is, prove $C(AB) \subseteq C(A)$.
- **M.3.** [15 points] Suppose that \mathbf{v}_1 and \mathbf{v}_2 are any two vectors from \mathbf{C}^m . Prove the following set equality. $\langle \{\mathbf{v}_1, \mathbf{v}_2\} \rangle = \langle \{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2\} \rangle$.

Do any two (2) of these "Other" problems

- **T.1.** [15 points] Is it possible to have an invertible 3×3 matrix A with the property that $A^2 = O_3$? Why or why not? (Here O_3 denotes the 3×3 zero matrix.)
- **T.2.** [15 points] Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $AB = I_n$. Let \overrightarrow{b} be a particular vector in \mathbb{C}^n . Show that the system of equations $A\overrightarrow{x} = \overrightarrow{b}$ must be consistent.
- **T.3.** [15 points] Our author (Beezer) proved in one of the textbook exercises that if If \vec{u}_1 and \vec{u}_2 are both in $\langle S \rangle$, the span of S, then so is the sum $\vec{u}_1 + \vec{u}_2$. Use Beezer's result and the Principle of Mathematical Induction to prove that if $\vec{u}_1, \vec{u}_2, \vec{u}_3, \cdots, \vec{u}_n$ are all in $\langle S \rangle$ then so is the sum $\vec{u}_1 + \vec{u}_2 + \vec{u}_3 + \cdots + \vec{u}_n$.
- **T.4.** [15 points] Suppose that \vec{a} and \vec{b} are solution vectors to the non-homogeneous linear system of equations $A\vec{x} = \vec{c}$. Prove that $\vec{a} \vec{b}$ is a solution vector to the homogeneous system $A\vec{x} = \vec{0}$.