I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of these "Computational" problems

C.1. $\left[8,7\right.$ Points] Given the matrix $A=\left[\begin{array}{ccccccc}1 & 3 & 2 & 1 & 0 & 3 & 2 \\ 2 & 6 & 1 & 8 & -3 & 6 & 4 \\ 1 & 3 & 4 & -3 & -2 & -1 & 2 \\ 2 & 6 & -3 & 16 & 7 & 20 & 4 \\ 1 & 3 & 0 & 5 & 2 & 7 & 2\end{array}\right]$.

1. (a) Write down the matrices C, O, K, L that are found in the extended reduced row-echelon form of A.
(b) Compute the column space of A by writing the null space of $L, N(L)$ as the span of a linearly independent set of vectors.
C.2. $[15$ points $]$ Consider the sets $S=\left\{\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ 4 \\ -3 \\ 0\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{c}1 \\ 0 \\ \frac{7}{3} \\ -\frac{8}{3} \\ -\frac{1}{3}\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -\frac{2}{3} \\ \frac{7}{3} \\ \frac{2}{3}\end{array}\right]\right\}$.
2. (a) Prove that $\langle S\rangle \subseteq\langle T\rangle$.

Do any two (2) of these "In Class, Text, or Homework" problems
M.1. [15 Points] There is a theorem in our text proving that if A is an invertible matrix, then $(\bar{A})^{-1}=$ $\overline{\left(A^{-1}\right)}$. Prove this theorem.
M.2. [15 Points] Prove that if A in an $m \times n$ matrix and B is $n \times p$ then the column space of $A B$ is contained in the column space of A. That is, prove $C(A B) \subseteq C(A)$.
M.3. [15 Points] Prove that if a set S is linearly dependent and S is a subset of the set T, then T is also linearly dependent.

Induction Problem

1. [12, 3 Points] Suppose A and B are square matrices of equal size and we know that $A B=B A$.
(a) Use mathematical induction to prove that $A^{n} B=B A^{n}$ for every positive integer n.
(b) Use your result from part (a.) above to prove that $A^{n} B^{m}=B^{m} A^{n}$ for every pair of positive integers n, m.

Do one (1) of these "Other"

T.1. [15 Points] Prove that if $S=\left\{\vec{u}_{1}, \cdots, \vec{u}_{p}\right\}$ is a linearly independent set of vectors and $\vec{v} \notin\langle S\rangle$ then the set $T=\left\{\vec{u}_{1}, \cdots, \vec{u}_{p}, \vec{v}\right\}$ is also linearly independent.
T.2. [15 Points] Prove that if $T=\left\{\vec{t}_{1}, \cdots, \vec{t}_{n}\right\}$ is a set and $S=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is another set contained in the span of T, (that is, $S \subseteq\langle T\rangle$) then $\langle S\rangle \subseteq\langle T\rangle$. More specifically, show that if $\vec{u}_{1} \in\langle T\rangle$ and $\vec{u}_{2} \in\langle T\rangle$, then any linear combination of \vec{u}_{1} and \vec{u}_{2} is also in $\langle T\rangle$.

