Smith

Math 290

Exam 2

October 16, 2008

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do both of these "Computational" problems

C.1. [8,7 Points] Given the matrix $A =$	[1]	3	2	1	0	3	2	1
	2	6	1	8	-3	6	4	
	1	3	4	-3	-2	-1	2	.
	2	6	-3	16	$\overline{7}$	20	4	
	1	3	0	5	2	7	2	

- 1. (a) Write down the matrices C, O, K, L that are found in the extended reduced row-echelon form of A.
 - (b) Compute the column space of A by writing the null space of L, N(L) as the span of a linearly independent set of vectors.

C.2. [15 points] Consider the sets
$$S = \left\{ \begin{bmatrix} 1\\2\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\4\\-3\\0 \end{bmatrix} \right\}$$
 and $T = \left\{ \begin{bmatrix} 1\\0\\\frac{7}{3}\\-\frac{8}{3}\\-\frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0\\1\\-\frac{2}{3}\\\frac{7}{3}\\\frac{7}{3}\\\frac{2}{3}\\\frac{2}{3} \end{bmatrix} \right\}.$

Do any two (2) of these "In Class, Text, or Homework" problems

1. (a) Prove that $\langle S \rangle \subseteq \langle T \rangle$.

M.1. [15 Points] There is a theorem in our text proving that if A is an invertible matrix, then $(\overline{A})^{-1} = \overline{(A^{-1})}$. Prove this theorem.

- **M.2.** [15 Points] Prove that if A in an $m \times n$ matrix and B is $n \times p$ then the column space of AB is contained in the column space of A. That is, prove $C(AB) \subseteq C(A)$.
- **M.3.** [15 Points] Prove that if a set S is linearly dependent and S is a subset of the set T, then T is also linearly dependent.

Induction Problem

- 1. [12,3 Points] Suppose A and B are square matrices of equal size and we know that AB = BA.
 - (a) Use mathematical induction to prove that $A^n B = BA^n$ for every positive integer n.
 - (b) Use your result from part (a.) above to prove that $A^n B^m = B^m A^n$ for every pair of positive integers n, m.

Do one (1) of these "Other"

- **T.1.** [15 Points] Prove that if $S = {\vec{u}_1, \dots, \vec{u}_p}$ is a linearly independent set of vectors and $\vec{v} \notin \langle S \rangle$ then the set $T = {\vec{u}_1, \dots, \vec{u}_p, \vec{v}}$ is also linearly independent.
- **T.2.** [15 Points] Prove that if $T = {\vec{t}_1, \dots, \vec{t}_n}$ is a set and $S = {\vec{u}_1, \vec{u}_2}$ is another set contained in the span of T, (that is, $S \subseteq \langle T \rangle$) then $\langle S \rangle \subseteq \langle T \rangle$. More specifically, show that if $\vec{u}_1 \in \langle T \rangle$ and $\vec{u}_2 \in \langle T \rangle$, then any linear combination of \vec{u}_1 and \vec{u}_2 is also in $\langle T \rangle$.