Exam 1

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

You must do this problem.

D.1. [5 points] What objects have null spaces? Give the definition of null space.
D.2. [5 points] Give the definition of a nonsingular matrix.

Do both of these "Computational" problems

C.1. [15 points] Determine if the following system of equations is consistent and, if so, find the solution set.

$$
\left\{\begin{array}{c}
x_{1}-x_{2}-3 x_{3}+x_{4}+2 x_{5}=0 \\
-2 x_{1}+x_{2}+5 x_{3}-2 x_{5}=-4 \\
4 x_{1}-2 x_{2}-10 x_{3}+x_{4}+5 x_{5}=5
\end{array}\right.
$$

C.2. [15 points] Suppose $[D \mid \vec{e}]=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 4 & 0 \\ 1 & -1 & 2\end{array}\right]$ is the result of the sequence of three row operations: $[A \mid \vec{b}] \xrightarrow{R_{2} \leftrightarrow R_{4}}[B \mid \vec{c}] \xrightarrow{3 R_{3}}[C \mid \vec{d}] \xrightarrow{2 R_{1}+R_{3}}[D \mid \vec{e}]$. What is A ?

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Suppose that $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right]$ are vectors in the null space of a matrix A with m rows and 4 columns. Prove that $\mathbf{t}=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2} \\ u_{3}+v_{3} \\ u_{4}+v_{4}\end{array}\right]$ is a solution of $L S(A, \mathbf{0})$ by explicitly showing that \mathbf{t} solves the i th equation where i is any index satisfying $1 \leq i \leq m$.
M.2. [15 points] Prove Property DSAC of the vector space C^{m}. More precisely, prove: if $\alpha, \beta \in \mathbf{C}$ and $\mathbf{u} \in \mathbf{C}^{m}$, then $(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u}$.
M.3. [8, 7 points] Prove Theorem NMRRI: A square matrix A is nonsingular if and only if the reduced row echelon form of A is the identity matrix.

Do any two (2) of these "Other" problems

T.1. [15 points] Prove that a system of linear equations is homogeneous if and only if it has the zero vector as a solution.
T.2. [15 points] Carefully explain why a linear system of equations $L S(A, \mathbf{b})$ is consistent if and only if the vector \mathbf{b} is equal to a linear combination of the column vectors of A.
T.3. [15 points] Suppose that a certain system of n linear equations in k variables has a unique solution. Determine which if any of the following absolutely must be true? For each of the others, give an augmented matrix in reduced row-echelon form for a linear system illustrating why it is not the case that they absolutely must be true.

1. $n<k$
2. $n=k$
3. $n>k$
4. $n \leq k$
5. $n \geq k$
