## Exam 1

I affirm this work abides by the university's Academic Honesty Policy.

# Print Name, then Sign 

## Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.


## Define all of the following

D.1. [5 points] The span of the set $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$.
D.2. [5 points] A dependent variable of the consistent system of linear equations $L S(A, \vec{b})$.
D.3. [5 points] The sum of $\vec{u}$ and $\vec{v}$ where $\vec{u}, \vec{v} \in \mathbf{C}^{m}$.

## Do both of these "Computational" problems

C.1. [15 points] By hand, put the following matrix into reduced row-echelon form.

$$
\left[\begin{array}{cccc}
1 & 1 & 2 & -1 \\
1 & -2 & 1 & -5 \\
3 & 1 & 1 & 3
\end{array}\right]
$$

C.2. [15 points] Suppose you have a system of $n$ linear equations in $k$ variables. Explain why It follows that

1. (a) both b.and c. below are correct
(b) if the system has a unique solution, then $n \geq k$
i. Unique solution means every column is a pivot column so must have enough equations for variables: $n \geq k$
(c) if $n \geq k$, then the system has a unique solution
(d) neither $b$. nor $c$. is necessarily correct.

## Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Given the matrix $A=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$ with column vectors $\vec{A}_{1}, \vec{A}_{2}, \vec{A}_{3}, \vec{A}_{4}$ and vector $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in \mathbf{C}^{3}$, prove that $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]$ solves $L S(A, \vec{b})$ if and only if $c_{1} \vec{A}_{1}+c_{2} \vec{A}_{2}+c_{3} \vec{A}_{3}+c_{4} \vec{A}_{4}=$ $\vec{b}$. [You may not use In-Class Theorem 2.]
M.2. [15 points] [15 points] Suppose that $\vec{w}_{1}, \vec{w}_{2} \in \mathbf{C}^{m}$. Prove that $\left\langle\left\{\vec{w}_{1}, \vec{w}_{2}\right\}\right\rangle=\left\langle\left\{\vec{w}_{1}, \vec{w}_{2}, 3 \vec{w}_{1}-2 \vec{w}_{2}\right\}\right\rangle$
M.3. $\left[15\right.$ points] Suppose we run the sequence of three row operations: $[A \mid \vec{b}] \xrightarrow{R_{2} \leftrightarrow R_{3}}[B \mid \vec{c}] \xrightarrow{3 R_{4}+R_{1}}[C \mid \dot{d}$ where

$$
[D \mid \vec{e}]=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 4 & 0 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

What is $\vec{b}$ ?

## Do any two (2) of these "Other" problems

T.1. [5, 10 points] Suppose that $S$ is a set containing exactly two distinct vectors from $\mathbf{C}^{m}$.

1. (a) Prove that the sets $S$ and $\langle S\rangle$ are not equal.
(b) If $\vec{x}, \vec{y} \in\langle S\rangle$. Prove that $\vec{x}+\vec{y} \in\langle S\rangle$.
T.2. [15 points] Let $A$ be any $m \times 4$ matrix whose third column vector is the sum of its first two column vectors. Let $B$ be the matrix that results from performing the row operation $\alpha R_{i}+R_{j}$ on $A$. Prove that the third column vector of $B$ is the sum of the first two column vectors of $B$.
T.3. [15 points] Suppose $A$ is an $n \times n$ matrix in which column vector $\vec{A}_{j}$ is twice column vector $\vec{A}_{i}$. Prove that $A$ is singular.
