Exam 1

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Complete the following definitions

D.1. [3 points] Given a finite set of vectors $S \subset \mathbf{C}^{m}$, the span of S is
D.2. [3 points] The null space of a matrix A, denoted $N(A)$ is
D.3. [4 points] A matrix A is in reduced row-echelon form if it meets all of the following conditions

Do both of these "Computational" problems

C.1. [10, 5 points] Solve the following system of linear equations by hand. Write the solution set using column vector notation.

$$
\begin{aligned}
x+3 y+4 w & =3 \\
-z-5 w & =-2 \\
x+3 y+z+9 w & =5 \\
2 x+6 y+8 w & =6
\end{aligned}
$$

C.2. [15 points] Suppose we run the sequence of three row operations: $[A \mid \vec{b}] \xrightarrow{R_{2} \leftrightarrow R_{4}}[B \mid \vec{c}] \xrightarrow{2 R_{3}}[C \mid \vec{d}]$ where $[D \mid \vec{e}]=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 4 & 0 \\ 1 & -1 & 2 \\ 0 & 1 & 1\end{array}\right]$. What is C if C is the result of running the row operation $-4 R_{2}+R_{1}$ on A ?

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Is there a parabola whose graph passes through the points $(1,3),(2,6),(4,-1),(5,0)$? Give careful reasons for your answer.
M.2. [15 points] Property SMAC of column vectors is: if $\alpha, \beta \in \mathbf{C}$ and $\mathbf{u} \in \mathbf{C}^{m}$, then $\alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u}$. Prove this property and write your proof in the style of the proof of Property DSAC given in the textbook.
M.3. [15 points] Prove that a system of linear equations is homogeneous if and only if it has the zero vector as a solution.

Do any two (2) of these "Other" problems

T.1. $[10,5$ points $]$ Suppose that α is any constant and that $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ is a solution of the homogeneous system of linear equations $L S(A, \mathbf{0})$. Prove that $\mathbf{t}=\left[\begin{array}{c}\alpha u_{1} \\ \vdots \\ \alpha u_{n}\end{array}\right]$ is also a solution of $L S(A, \mathbf{0})$. [Be sure to explicitly show that \mathbf{t} solves the system of equations.]
T.2. [15 points] Consider the system of m linear equations in n variables $L S(A, \mathbf{b})$, and suppose that the vector \vec{b} equals twice one column vector of A plus five times a different column vector of A. More precisely, there are two column indices j_{1} and j_{2} such that for each $i, 1 \leq i \leq m$, it is the case that $[\mathbf{b}]_{i}=2[A]_{i, j_{1}}+5[A]_{i, j_{2}}$. Prove that the system is consistent.
T.3. [15 points] Let $S=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ and $T=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{1}+2 \vec{w}_{2}+3 \vec{w}_{3}\right\}$ be subsets of \mathbf{C}^{m}. Prove that $\langle S\rangle=\langle T\rangle$.

