Exam 1

I affirm this work abides by the university's Academic Honesty Policy.
Print Name, then Sign

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Complete the following definitions

D.1. [3 points] Two systems of linear equations are equivalent if
D.2. [3 points] The null space of a matrix A, denoted $N(A)$ is
D.3. [4 points] The set of column vectors $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n}\right\}$.is linearly dependent if

Do both of these "Computational" problems

C.1. [10, 5 points] By hand, solve the following system of linear equations. Write the solution set using column vector notation.

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}+x_{4}=1 \\
x_{2}+x_{3}-x_{4}=3 \\
-x_{1}+x_{2}+7 x_{3}-x_{4}=0
\end{array}
$$

C.2. [15 points] Below are a matrix A and the matrix B that is row-equivalent to A and in reduced row-echelon form.

1. (a) Is A a singular matrix?
(b) What are r, D, and F for matrix B ?
(c) Is the linear system of equations $L S(A, \mathbf{0})$ consistent? If so, how many solutions are there?
(d) Are there any vectors \mathbf{b} for which the linear system of equations $L S(A, \mathbf{b})$ is inconsistent?
(e) Write the null space $N(A)$ of A as a span.

$$
A=\left[\begin{array}{ccccccc}
1 & 3 & 1 & 1 & 1 & 1 & 5 \\
2 & 6 & 1 & 4 & 1 & 2 & 7 \\
-3 & -9 & -1 & -7 & 1 & -1 & -3 \\
1 & 3 & 1 & 1 & 3 & 3 & 11
\end{array}\right], B=\left[\begin{array}{ccccccc}
1 & 3 & 0 & 3 & 0 & 1 & 2 \\
0 & 0 & 1 & -2 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Do any two (2) of these "In Class, Text, or Homework" problems

M.1. [15 points] Suppose you are given a system of n linear equations in k variables. Determine which of the following is true. Briefly explain why it is true and why the others are false.

1. (a) both b) and \mathbf{c}) below are correct
(b) if the system has a unique solution then $n \geq k$
(c) if $n=k$, then the system has a unique solution
(d) neither \mathbf{b}) nor \mathbf{c}) is correct
M.2. [15 points] Property DVAC of column vectors is: if $\alpha \in \mathbf{C}$ and $\mathbf{u}, \mathbf{v} \in \mathbf{C}^{m}$, then $\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$. Prove this property and write your proof in the style of the proof of Property DSAC given in the textbook.
M.3. [15 points] Prove the following half of Theorem PSPHS. Suppose that \mathbf{w} is a solution to the linear system of equations $L S(A, \mathbf{b})$. If $\mathbf{y}=\mathbf{w}+\mathbf{z}$ for some vector $\mathbf{z} \in N(A)$, then \mathbf{y} is a solution of $L S(A, \mathbf{b})$ Use the notation for system $L S(A, \mathbf{b})$ given below.

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}= & b_{2} \\
& \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}= & b_{m}
\end{aligned}
$$

Do any two (2) of these "Other" problems

T.1. [10, 5 points] Given the set

$$
S=\left\{\left[\begin{array}{c}
5 x_{3}-6 x_{5} \\
2 x_{3}+x_{5} \\
x_{3} \\
x_{5} \\
x_{5}
\end{array}\right]: x_{3}, x_{5} \in \mathbf{C}\right\}
$$

1. Find a 4×5 matrix A, that is not in reduced row-echelon form, whose null space is the set S.
2. Write S as a span.
T.2. [15 points] Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ be a set of vectors. Prove that S is linearly dependent, if and only if one of the vectors in S equals a scalar multiple of the other.
T.3. [15 points] Suppose that $W=\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \cdots, \vec{w}_{p}\right\}$ is a set of vectors in \mathbb{C}^{21} and that \vec{u} and \vec{v} are both in $\langle W\rangle$. Prove that $\vec{u}+\vec{v}$ is also in the span $\langle W\rangle$.
