March 30, 2006

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any three (3) of these computational problems
C.1. Option: Find the inverse of the following matrix by hand. You may not use a calculator.

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 2 \\
1 & 1 & 3 & 3 & 3 \\
1 & 1 & 1 & 4 & 4 \\
1 & 1 & 1 & 1 & 5
\end{array}\right]
$$

C.2. Write $A=\left[\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right]$ as a product of elementary matrices.
C.3. Two matrices A and B commute if $A B=B A$. Show that the set of matrices in M_{22} that commute with $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is a subspace of M_{22} and find a basis for that subspace.
C.4. Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{p}\right\}$ be a collection of vectors in a vector space V. Show that the span of S, $<S>$ is a subspace of V and that $\operatorname{dim}(V) \leq p$.

Do one (1) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Suppose $S=\left\{\vec{v}_{1}, \cdots, \vec{v}_{t}\right\}$ is a basis for a vector space V and $\vec{w} \neq \overrightarrow{0}$ is a vector in the span of S, $<S\rangle$. Prove there is a basis, T, of V where $\vec{w} \in T$.
M.2. Suppose A is an invertible matrix of size n. Prove that $\overline{\left(A^{-1}\right)}=(\bar{A})^{-1}$.

Do one (1) of these problems you've not seen before.
T.1. Let V be a vector space and U and V subspaces of W. Show that the set of vectors $U+V=$ $\{\vec{u}+\vec{v} \in W: \vec{u} \in U$ and $\vec{v} \in V\}$ is a subspace of W.
T.2. If A is an invertible matrix of size n, prove $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Do this mathematical induction problem

Induct Use mathematical induction to prove the following.
Let A be a square matrix of size $n \geq 2$ and B the matrix obtained after multiplying each entry of row i of A by the nonzero constant α (a type 2 elementary row operation). Use the technique of mathematical induction to prove that $\operatorname{det}(A)=\frac{1}{\alpha} \operatorname{det}(B)$.

