Mathematics 232-A

Exam 3

Spring 2006

March 30, 2006

Name

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any three (3) of these computational problems

C.1. Option: Find the inverse of the following matrix by hand. You may not use a calculator.

[1]	1	1	1	1]
1	2	2	2	2
1	1	3	3	3
1	1	1	4	4
[1	1	1	1	5

C.2. Write $A = \begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}$ as a product of elementary matrices.

- C.3. Two matrices A and B commute if AB = BA. Show that the set of matrices in M_{22} that commute with $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is a subspace of M_{22} and find a basis for that subspace.
- C.4. Let $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}}$ be a collection of vectors in a vector space V. Show that the span of S, $\langle S \rangle$ is a subspace of V and that dim $(V) \leq p$.

Do one (1) of these problems from the text, homework, or class.

You may NOT just cite a theorem or result in the text. You must prove these results.

- M.1. Suppose $S = {\vec{v_1}, \dots, \vec{v_t}}$ is a basis for a vector space V and $\vec{w} \neq \vec{0}$ is a vector in the span of S, $\langle S \rangle$. Prove there is a basis, T, of V where $\vec{w} \in T$.
- M.2. Suppose A is an invertible matrix of size n. Prove that $\overline{(A^{-1})} = (\overline{A})^{-1}$.

Do one (1) of these problems you've not seen before.

- T.1. Let V be a vector space and U and V subspaces of W. Show that the set of vectors $U + V = \{\vec{u} + \vec{v} \in W : \vec{u} \in U \text{ and } \vec{v} \in V\}$ is a subspace of W.
- T.2. If A is an invertible matrix of size n, prove det $(A^{-1}) = \frac{1}{\det(A)}$.

Do this mathematical induction problem

Induct Use mathematical induction to prove the following.

Let A be a square matrix of size $n \ge 2$ and B the matrix obtained after multiplying each entry of row i of A by the nonzero constant α (a type 2 elementary row operation). Use the technique of mathematical induction to prove that det $(A) = \frac{1}{\alpha} \det(B)$.