February 23, 2006

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any three (3) of these computational problems
C.1. Is the set of vectors $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\right\}\left\{\left[\begin{array}{l}7 \\ 3 \\ 5 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 3 \\ 9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 3 \\ 8 \\ 6\end{array}\right],\left[\begin{array}{l}4 \\ 9 \\ 7 \\ 3 \\ 1\end{array}\right]\right\}$ linearly dependent or linearly independent? If it is linearly dependent, first write one of the w's as a linear combination of the others and then write the set T that is a subset of S, is linearly independent, and for which $\langle T\rangle=\langle S\rangle$.
C.2. Write each of the following complex numbers in the form $a+b i$.
(a) $i(3-2 i)+7(\overline{-2+i})$.
(b) $(4-2 i)(-3+i)$
(c) $\frac{2-i}{3+4 i}$
C.3. Consider the following vectors in \mathbf{C}^{4}.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]
$$

Find all vectors \vec{v}_{4} in R^{4} so that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form an orthonormal set.
Although you don't need it, the formula for the Gram-Schmidt process is

$$
\vec{u}_{i}=\vec{v}_{i}-\left(\frac{<\vec{v}_{i}, \vec{u}_{1}>}{<\vec{u}_{1}, \vec{u}_{1}>}\right) \vec{u}_{1}-\cdots-\left(\frac{<\vec{v}_{i}, \vec{u}_{i-1}>}{<\vec{u}_{i-1}, \vec{u}_{i-1}>}\right) \vec{u}_{i-1}
$$

C.4. The matrix $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$ has the property that there is at least one vector \vec{x} for which $A \vec{x}=$ $5 \vec{x}$. Find all such vectors.

Do any two (2) of these problems from the text, homework, or class.
You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Prove that if the matrix A is nonsingular and B is any appropriately sized matrix, then $N(A B) \subseteq$ $N(B)$.
M.2. Prove DMAM (Distributivity across Matrix Addition): If $\alpha \in \mathbf{C}$, and $A, B \in M_{m n}$, then $\alpha(A+B)=$ $\alpha A+\alpha B$.
M.3. Prove if $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a linearly dependent set in \mathbf{C}^{23}, then the set

$$
\left\{2 w_{1}+w_{2}+3 w_{3},-3 w_{1}+2 w_{2}+4 w_{3}, w_{1}+2 w_{2}+3 w_{3}\right\}
$$

is linearly dependent.

Do one (1) of these problems you've not seen before.
T.1. Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $A B=I_{n}$. Let \vec{b} be a particular vector in R^{n}. Show that the system of equations $A \vec{x}=\vec{b}$ must be consistent.
T.2. Use the Principle of Mathematical Induction to prove that the statement $P(n)$ given by $\sum_{k=1}^{n}(2 k-1)=$ n^{2} holds for all positive integers.

