Technology used: Directions:
Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (20 points) Do one of the following.
(a) The base of a solid is the region in the first quadrant bounded by the graphs of $y=x^{2}$ and $y=\sqrt{x}$. The cross sections of the solid perpendicular to the x - axis are semicircles whose diameters lie in the $x y$ - plane. Find the volume of this solid.
(b) Find the volume of the solid generated by revolving the region bounded by the curve $y=\frac{4}{x^{3}}$, the vertical line $x=1$ and the horizontal line $y=\frac{1}{2}$ about the line $x=2$.
2. (20 points) Do one of the following.
(a) A rock climber is about to haul up 21 pounds of equipment that has been hanging beneath her on 90 feet of rope that weighs $0.3 \frac{\mathrm{lb}}{\mathrm{ft}}$. How much work will it take?
(b) A storage tank is a right circular cylinder 20 feet long and 8 feet in diameter with a horizontal axis. If the tank is half full of olive oil weighing $57 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$, find the work done in emptying the tank through an outlet that is 6 feet above the top of the tank.
3. (20 points) Do one of the following.
(a) Use integration by parts to prove the following reduction formula is true.

$$
\int \sec ^{n}(x) d x=\frac{1}{n-1} \sec ^{n-2}(x) \tan (x)+\frac{n-2}{n-1} \int \sec ^{n-2}(x) d x .
$$

(b) Use the Useful Information for Sequences provided below to find the formula for

$$
\sum_{k=0}^{n} k 5^{k}
$$

4. (10 points each) Set up any four of the following to the point where the problem can be finished by citing a formula from the Integral Table Handout. Be sure to cite the appropriate formula(s). Do not use a calculator.
(a)

$$
\int \frac{1}{1+\sqrt{y}} d y
$$

(b)

$$
\int x^{3} \cos \left(x^{2}\right) d x
$$

(c)

$$
\int \frac{\sin (t)}{(3+\cos (t))^{2}} d t
$$

(d)

$$
\int x \sqrt{x+2} d x
$$

(e)

$$
\int \frac{x}{9+4 x^{4}} d x
$$

(f)

$$
\int \frac{x+3}{\sqrt{x^{2}+2 x-8}} d x
$$

Useful Information about Sequences

$D_{k}\left[k^{\underline{n}}\right]=n k^{n-1}$		$D_{k}\left[c^{k}\right]=(c-1) c^{k}$
If $a(k)=k k^{n}$, then $A(k)=\frac{1}{n+1} k^{n+1}$		If $a(k)=c^{k}$, then $A(k)=\frac{1}{c-1} c^{k}$
If $D_{k}[A(k)]=a(k)$, then $\sum_{k=0}^{n=0} a(k)=\left.A(k)\right\|_{0} ^{n+1}$		

$\sum_{k=0}^{n} U(k) D_{k}[V(k)]=\left.U(k) V(k)\right|_{0} ^{n+1}-\sum_{k=0}^{n} V(k+1) D_{k}[U(k)] \quad$ (Discrete Integration by Parts)

