Technology used: Directions:
Be sure to include in-line citations, including page numbers if appropriate, every time you use a text or notes or technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

The Problems

1. (7 points each) Evaluate the following indefinite integrals.
(a)

$$
\int\left(2 e^{x}+4 \sec (x) \tan (x)\right) d x
$$

(b)

$$
\int \frac{1}{t^{2}}\left(\frac{2}{t}-\frac{5}{t^{3}}\right) d t
$$

(c)

$$
\int \frac{x^{3}-\sqrt[3]{x}+1}{x} d x
$$

(d)

$$
\int \frac{23}{\sqrt{1-x^{2}}}+e^{x} d x
$$

2. (16, 3 points)
(a) Find a formula $a(k), k=0,1,2, \cdots$ that gives the following sequence. Express your answer using the 'bar' ($k \underline{\underline{n}}$) notation.

$$
3,-3,1,33,111,253,477,801,1243,1821,2553, \cdots
$$

Show all of your work.
(b) Express your formula in the 'nonbar' $\left(k^{n}\right)$ notation but DO NOT SIMPLIFY your answer.
3. (20 points) Use the summation techniques from our discussion of sequences and/or Section 5.2 of our textbook to find the exact area bounded by the graph of $y=x^{2}+2 x$,the x - axis, and the vertical lines $x=0$ and $x=3$.
4. Do one of the following
(a) (20 points) Suppose that $a(k), k=0,1,2, \cdots$ is an arbitrary (but unknown) sequence and that $A(k), k=0,1,2, \cdots$ is one of the discrete antiderivatives of $a(k)$ but we don't know whether or not $A(0)=0$. Show that

$$
A(n+1)-A(0)=\sum_{k=0}^{n} a(k)=a(0)+a(1)+a(2)+\cdots+a(n)
$$

(b) (20 points) The following limit gives the exact area of a region in the plane. Carefully describe that region. DO NOT EVALUATE the limit.

$$
\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\left[3\left(2+\frac{4 k}{n}\right)^{3}+\left(2+\frac{4 k}{n}\right)^{2}+5\right] \frac{4}{n}
$$

5. (20 points) An airplane has a constant acceleration while moving down the runway from rest. What is the acceleration of the plane at liftoff if the plane requires 900 feet of runway before lifting off at $88 \frac{\mathrm{ft}}{\mathrm{s}}$?

Useful Facts

$$
\begin{aligned}
\sum_{k=1}^{n} 1 & =n & \sum_{k=1}^{n} k & =\frac{n(n+1)}{2} \\
\sum_{k=1}^{n} k^{2} & =\frac{n(n+1)(2 n+1)}{6} & \sum_{k=1}^{n} k^{3} & =\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

- $k^{\underline{n}}=k(k-1)(k-2) \cdots(k-n+1)$
- $D_{k}\left[k^{\underline{n}}\right]=n k \underline{n-1}$ and If $a(k)=k^{\underline{n}}$, then $A(k)=\frac{1}{n+1} k \frac{n+1}{}+C$
- $D_{k}\left[2^{k}\right]=2^{k}$ and if $a(k)=2^{k}$, then $A(k)=2^{k}+C$
- $D_{k}\left[r^{k}\right]=(r-1) r^{k}$ and if $a(k)=r^{k}$ then $A(k)=\frac{1}{r-1} r^{k}+C$

$$
\begin{array}{ll}
k^{0}=k^{\underline{0}} & \text { Discrete Antiderivative } \rightarrow \quad k^{\underline{1}}=k+C \\
k^{1}=k^{\underline{1}} & \text { Discrete Antiderivative } \rightarrow \quad \frac{1}{2} k \underline{\underline{2}}=\frac{1}{2} k(k-1)+C \\
\bullet k^{2}=k^{\underline{2}}+k^{\underline{1}} & \text { Discrete Antiderivative } \rightarrow \frac{1}{3} k^{\underline{3}}+\frac{1}{2} k^{\underline{2}}=\frac{1}{6} k(2 k-1)(k-1) \\
k^{3}=k^{\underline{3}}+3 k^{\underline{2}}+k^{\underline{1}} & \text { Discrete Antiderivative } \rightarrow \frac{1}{4} k \underline{4}+k^{\underline{3}}+\frac{1}{2} k^{\underline{2}}=\frac{1}{4} k^{2}(k-1)^{2} \\
k^{4}=k^{\underline{4}}+6 k^{\underline{\underline{3}}+7 k^{\underline{2}}+k^{\underline{1}}} & \text { Discrete Antiderivative } \rightarrow \frac{1}{5} k^{5}-\frac{1}{2} k^{4}+\frac{1}{3} k^{3}-\frac{1}{30} k
\end{array}
$$

