December 19, 2008

Name

Technology used: Only write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do any ten (10) of the following.

1. [15 points] Write out one Riemann Sum with $n=5$ and $\|P\|=2$ for the function $f(x)=x^{2}-x$ on the interval $[0,6]$.You do not need to simplify any of the algebra.
2. [10, 5 points] Here is a Riemann sum for a function f on an interval $[a, b]: R_{n}=\frac{1^{7}+2^{7}+3^{7}+\cdots+n^{7}}{n^{8}}$
(a) What are f and $[a, b]$?
(b) Use the definition of the definite integral to evaluate the limit $\lim _{n \rightarrow \infty} \frac{1^{7}+2^{7}+3^{7}+\cdots+n^{7}}{n^{8}}$.
3. [15 points] The region in the first quadrant enclosed by the coordinate axes, the curve $y=\ln (x)$, and the line $y=1$ is revolved around the y-axis to generate a solid. Find the volume of the solid.
4. [15 points] Find the length of the enclosed loop $x=t^{2}, y=\left(t^{3} / 3\right)-t$ where t starts at $-\sqrt{3}$ and ends at 0 .
5. [15 points] Evaluate the following integral

$$
\int \frac{x^{4}+3 x^{3}+4 x^{2}+13 x+3}{x^{3}+4 x} d x
$$

6. [15 points] The population of the world was estimated to be 3 billion in 1959 and 6 billion in 1999. What would an exponential model of population growth predict the population to be in 2008 ? [The actual population was $6,747,510,603$ as of 17:44 GMT (EST+5) Dec 16, 2008 - data from the US Census Bureau's population clock.]
7. Recall that $\left.\int_{a}^{b} u d v=u v\right]_{a}^{b}-\int_{a}^{b} v d u$.Use this and the fact that $\int_{0}^{\infty} t^{2} e^{-t} d t=2$ to evaluate the improper integral $\int_{0}^{\infty} t^{3} e^{-t} d t$
(a) [5 points] Antiderivative
(b) $[10$ points $] \operatorname{Limit}(\mathrm{s})$
8. [5,5,5 points] Give examples of the following.
(a) A diverging infinite sequence.
(b) A converging infinite series.
(c) An improper integral with at least 3 improprieties.
9. [15 points] Determine the radius of convergence, center, values of x where the series converges absolutely, and values of x where the series converges conditionally for $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-2)^{n}}{4^{n} \sqrt{n+1}}$
10. [15 points] Find the Taylor series generated by the function $f(x)=\cos (x)$ at $x=a$ where $a=\pi / 2$. Be careful. Use the full process for finding a Taylor series (taking derivatives of all orders). Do not use the Maclaurin series for $\cos (x)$ since that is not centered at $a=\pi / 2$.
11. [15 points] Starting with the Maclaurin series for $\sin (x)$ in the "Useful Information" section below, approximate the value of the integral $\int_{0}^{1} t \sin \left(t^{4}\right) d t$.Use an error bound (not your calculator) to prove your approximation has an error of magnitude less than 10^{-6}.
12. [15 points] Prove that $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$ for every number x. [Hint: the Maclaurin series for e^{x} converges for every number x.]

Useful Information

- The Taylor Series for $f(x)$ at $x=a$ is $\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}$
- The error bound for a converging alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} u_{k}$ is $\left|L-S_{n}\right|<u_{n+1}$
- $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1}$ converges to $\sin (x)$ for every real number x.
- $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for every real number x.

