Technology used:

write on one side of each page.

1. [15 points] Do one (1) of the following.
(a) Using Riemann sums, carefully explain why the formula for the method of slicing, $\int_{a}^{b} A(x) d x$ gives the volume of a solid. Include the meaning of a, b, and $A(x)$.
(b) If $\left\{a_{n}\right\}$ is an infinite sequence of numbers, fully describe the definition of what it means to say the infinite series $\sum_{n=1}^{\infty} a_{n}$ converges to the number L.
2. [15 points] Find the exact length of the curve given by $x=\frac{1}{6} y^{3}+\frac{1}{2} y^{-1}$ from $y=2$ to $y=3$.
3. [15 points] Solve the following initial value problem. Express your answer y as a function of x.

$$
\sec (x) \frac{d y}{d x}=e^{y+\sin (x)}, \quad y(0)=0
$$

4. [15 points] Determine the exact sum of the convergent geometric series

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{3^{n-1}}{5^{n}}
$$

5. [15 points] Find the radius and interval of convergence of the following power series. Also determine any values of x for which the series converges conditionally.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-1)^{n+2}}{2 n+1}
$$

w
6. [15 points] Determine the Taylor Series for the function $f(x)=(x+3)^{-2}$ when $a=-1$.
7. [15 points each] By hand (without using a calculator or table of integrals), evaluate two (2) of the following integrals
(a) $\int \frac{[\ln (t+1)]^{2}}{t+1} d t$
(b) $\int x^{2} e^{4 x} d x$
(c) $\int \sqrt{1-9 t^{2}} d t$
(d) $\int \frac{4 x^{2}}{(x-1)\left(x^{2}+2 x+1\right)} d x$
8. [15 points each] Do two (2) of the following:
(a) Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots \cdots(3 n-1)}{2 \cdot 4 \cdot 6 \cdots \cdot(2 n)} x^{n}
$$

(b) Prove that if all of the terms a_{n} are positive and the series $\sum_{n=1}^{\infty} a_{n}$ converges, then the series $\sum_{n=1}^{\infty} a_{n}^{2}$ also must converge.
(c) Prove the theorem that absolute convergence implies convergence. More specifically, prove that if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then so does the series $\sum_{n=1}^{\infty} a_{n}$.

Useful Information

Taylor's Formula

If f has derivatives of all orders in an open interval I containing the number a, then for each positive integer n and for each x in I, we have $f(x)=P_{n}(x)+R_{n}(x)$ where $P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^{k}}{k!}$ and $R_{n}(x)=\frac{f^{(n+1)}(c)(x-a)^{n+1}}{(n+1)!}$ for some number c between a and x.

Frequently Used Taylor Series

- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$
- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, for $|x|<\infty$
- $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$, for $|x|<\infty$
- $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, for $|x|<\infty$
- $\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$, for $-1<x \leq 1$

