October 7, 2010

Technology used:

Only write on one side of each page.
Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. $[10,10,10$ points $]$ Evaluate the following integrals. Show all of your work.
2. $\int \cos ^{5}(3 x) d x$
3. $\int \sec ^{4}(2 x) d x$
4. $\int y \ln (y) d y$
5. [15 points] Find the length of the curve $y=x^{1 / 2}-(1 / 3) x^{3 / 2}, 1 \leq x \leq 4$.
6. [15 points] Find the area of the surface generated by revolving the curve $y=\sqrt{4 x-x^{2}}, 1 \leq x \leq 2$ about the x-axis.
7. [15 points] Solve the initial value problem $\frac{d y}{d x}=\frac{y \ln (y)}{1+x^{2}}, y(0)=e^{2}$.
8. [10 points] A deep dish-apple pie, whose internal temperature was $220^{\circ} \mathrm{F}$ when removed from the oven was set out on a breezy $40^{\circ} \mathrm{F}$ porch to cool. Fifteen minutes later, the pie's internal temperature was $180^{\circ} \mathrm{F}$. How much longer did it take for the pie to cool to $70^{\circ} \mathrm{F}$?
9. [15 points] A disk of radius 2 is revolved around the y-axis to form a solid sphere. A round hole of radius $\sqrt{3}$, centered on the y-axis is bored through the sphere. Find the volume of material removed from the sphere.

Extra Credit [5 points] At each point on the curve $y=2 \sqrt{x}$, a line segment of length $h=y$ is drawn perpendicular to the $x y$-plane. Set up an integral that equals the area of the surface formed by these perpendiculars from $x=0$ to $x=3$. [Note that this is not a surface of revolution so none of the formulas in Chapter 6 apply. Develop your own integral by using Riemann sums to estimate the area of the surface.]

