September 16, 2010

Technology used:

write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [10 points] Rewrite the following sum as indicated.

$$
\sum_{k=4}^{101}\left(k^{3}-1\right)^{2}=\sum_{j=9}
$$

2. [15 points] Find the derivative of $G(x)=\int_{e^{5 x}}^{3} \sin \left(t^{2}\right) d t$ using part 1 of the Fundamental Theorem of Calculus.
3. [15 points] Do one (1) of the following. Do not use your calculator.
4. (a) Evaluate $\int\left(\frac{2 t^{2}+1}{t^{3}}-3 t^{\sqrt{2}}+5 \sec ^{2}(t)+6 \sec (t) \tan (t)+\frac{4}{1+t^{2}}\right) d t$
(b) Verify the formula $\int \arcsin (a x) d x=x \arcsin (a x)+\frac{1}{a} \sqrt{1-a^{2} x^{2}}+C$ where a is a constant by differentiating the right hand side.
5. [5, 5, 10 points] If we use the partition points $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$ to partition the interval [2,5] into n subintervals of equal length
6. (a) What is the value of Δx in terms of the letter n ?
(b) Write the values of $x_{0}, x_{1}, x_{2}, x_{k}$, and x_{n} in terms of the letter n.
(c) Use sigma notation to write, in terms of the letter n, the Riemann sum for the function $f(x)=$ $x+x^{2}$ that uses the left endpoint of each subinterval as the value of c_{k}. Do not simplify this Riemann Sum.
7. [10 points each] Do both of the following. Do not use your calculator. [Useful information: $\cos (\pi / 3)=$ $1 / 2$ and $\cos (\pi / 4)=1 / \sqrt{2}$.]
8. (a) Evaluate $\int \frac{\sqrt{\arcsin (x)} d x}{\sqrt{1-x^{2}}}$
(b) Evaluate $\int_{\sqrt{2} / 3}^{2 / 3} \frac{d y}{|y| \sqrt{9 y^{2}-1}}$
9. [10 points each] Write out definite integrals that give the volumes of both of the following. Do not evaluate the integrals.
10. (a) The solid:
i. with base the region in the $x y$-plane between the curve $y=4 \sin (x)$ and the interval $[0, \pi]$ on the x-axis
ii. with cross-sections perpendicular to the x-axis that are squares with one side running from the x-axis to the curve.
(b) The solid obtained by revolving the region in the first quadrant bounded by $y=x^{2}$ and $y=2 x$ about the vertical line $x=3$.
