April 26, 2012

Technology used:

write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.
"A chief event of life is the day in which we have encountered a mind that startled us". -Ralph Waldo Emerson, writer and philosopher (1803-1882)

Problems

1. [15 points] From the quiz: Find a polynomial that will approximate the following function throughout the interval $[0,0.5]$ with an error of magnitude less than 10^{-3}

$$
F(x)=\int_{0}^{x} \arctan (t) d t
$$

2. [15 points] Using any results from Chapter 8 , build the Maclaurin Series for the following function. [Exploiting known Taylor Series is the easiest approach.]

$$
f(x)=\frac{x^{3}}{1-3 x}
$$

3. [10 points each] Do any two (2) of the following.

Use appropriate convergence tests to determine whether the following series of positive terms converge or diverge. Show your work.
(a) $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$
(b) $\sum_{n=1}^{\infty}\left(1-\frac{1 / 3}{n}\right)^{n}$
(c) $\sum_{n=1}^{\infty} \frac{(10,000)^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$
4. [15 points] Use an appropriate convergence test to determine if the following series of positive terms converges

$$
\sum_{n=0}^{\infty} \frac{n!(n+1)!(n+2)!}{(3 n)!}
$$

5. [15 points] Determine the radius of convergence, interval of convergence and numbers where convergence is conditional for the power series

$$
\sum_{n=0}^{\infty} \frac{(4 x-5)^{n+1}}{2 n}
$$

6. [10 points] Prove the theorem that absolute convergence implies convergence. More specifically, prove that if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then so does the series $\sum_{n=1}^{\infty} a_{n}$.
7. [10 points] Replace the following equation with an equivalent polar equation.

$$
(x+2)^{2}+(y-5)^{2}=16
$$

8. Extra Credit. [5 points] Give an example of converging series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ for which the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ diverges. [Note that the terms do not need to be positive.]

Useful Information

- The Taylor series generated by the function f at $x=a$ is

$$
\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

and the remainder term is

$$
R_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

where c is a number between a and x.

- If $\sum_{n=0}^{\infty}(-1)^{n} u_{n}$ is a convergent alternating series with sum S and if

$$
\begin{aligned}
s_{n} & =\sum_{k=0}^{n}(-1)^{k} u_{k} \\
& =u_{0}-u_{1}+u_{2}-u_{3}+\cdots+(-1)^{n} u_{n}
\end{aligned}
$$

is the n^{\prime} th partial sum of the original series, then the n^{\prime} th partial sum approximates the exact sum to within u_{n+1}. That is, $\left|S-s_{n}\right|<u_{n+1}$.

- The Maclaurin series for the arctangent function is

$$
\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}, \quad|x| \leq 1
$$

