Technology used:

write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Examination Problems

1. [5, 5, 5 points] Determine whether the following sequences converge or diverge. Find the limit of each convergent sequence. Explain your answer.
(a) $a_{n}=\frac{(-1)^{n+1}}{\sqrt{2 n-1}}$.
(b) $a_{n}=\left(1-\frac{1}{n}\right)^{n^{2}}$
(c) $a_{n}=\sqrt[n]{n^{5}}$
2. [10 points] Do one (1) of the following.
(a) Use partial fractions to find the exact sum of the following series.

$$
\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}
$$

(b) Find the values of x for which the following geometric series converges. In addition, find the sum of the series (as a function of x) for those values of x.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n-1}(x-3)^{n-1}
$$

(c) Use a geometric series to express the number $0 . \overline{7}=0.77777777 \cdots$ as the ratio of two integers. [Hint: this number is (better and better) approximated by $0.7,0.77,0.777$, etc.]
3. [15 points] Do one (1) of the following.
(a) Use the integral test to determine if the following series converges or diverges. Give reasons and show your work.

$$
\sum_{n=1}^{\infty} \frac{e^{-n}}{1+e^{-2 n}}
$$

(b) The P-series $\sum_{n=1}^{\infty} \frac{1}{n_{1}^{3}}$ can be shown to converge using the integral test. Bound the error in using $S_{4}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}=\frac{2035}{1728}$ to approximate the actual limit of this infinite series.
4. [15 points each] Do four (4) of the following but make sure at least one (1) of them is an alternating series.
Which of the following series converge absolutely, which converge conditionally, and which diverge? Give reasons and show your work.
(a) $\sum_{n=1}^{\infty} \frac{1}{1+\ln (n)}$
(b) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
(c) $\sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt[n]{10})$
(d) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n}}{n^{2}+n}$
(e) $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n}$
(f) $\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n!}$
(g) $\sum_{n=1}^{\infty} \frac{n}{(\ln (n))^{n}}$

