December 4, 2008

## Name

Technology used:
Only write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [5, 5 points] The Taylor Series generated by a certain function $f$ at $x=2$ is $\sum_{n=0}^{\infty} \frac{2^{n}}{(2 n+1)}(x-2)^{2 n+1}$.
(a) Determine $f^{(5)}(2)$.
(b) Determine $f^{(100)}(2)$.
2. [15 points] Do one (1) of the following.
(a) Find the Taylor Series generated by $f(x)=2 x^{3}-x+3$ at $x=2$.
(b) Use sigma notation to write the quadratic approximation for the function $f(x)=(2-x)^{-2}$ at $x=1$.
3. [15 points each] Do two of the following.

Which of the following series converge and which diverge? Is the convergence conditional or absolute?
(a) $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{(2 n)!}{(n+1)!(n+2)!}$
(b) $\sum_{n=1}^{\infty} \frac{n^{13}}{5^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt[3]{n}}$
4. [15 points] Find the center, radius of convergence, and interval of convergence for the following series. Specify the values of $x$ for which the series converges absolutely and the values for which it converges conditionally.

$$
\sum_{n=1}^{\infty} \frac{2(n+1)}{5^{n} n^{2}}(x+1)^{n}
$$

5. [15 points] Find the Taylor Series generated by $f(x)=\ln (x)$ at $x=1$. Write your answer in sigma notation.
6. [15 points] The series $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$ and $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$ converge to $\cos (x)$ and $\sin (x)$, respectively for all values of $x$. Use series multiplication to find the first four non-zero terms of a series for $\cos (x) \sin (x)$.
