Name

Technology used:

write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do any six (6) of the following problems

1. Evaluate

$$
\int \tan ^{5}(2 t) \sec ^{4}(2 t) d t
$$

2. Use the method of partial fractions to evaluate

$$
\int \frac{x^{3}+2}{4-x^{2}} d x
$$

3. Use a substitution to change the following integral into one you can find in the integration table. Then evaluate the integral.

$$
\int \frac{d t}{\tan (t) \sqrt{4-\sin ^{2}(t)}}
$$

4. Evaluate (be careful)

$$
\int_{-2}^{0} \frac{d y}{(y+1)^{6 / 5}}
$$

5. Do both of the following.
(a) The infinite region bounded by the coordinate axes and the curve $y=-\ln (x)$ in the first quadrant is revolved about the x-axis to generate a solid. Express the volume of this solid as a sum of improper integrals each of which has exactly one impropriety which occurs at a limit of integration.
(b) Use the integration table to evaluate at least one of these improper integrals.
6. Evaluate one of the following
(a)

$$
\int \theta \cos (2 \theta+1) d \theta
$$

(b)

$$
\int x^{3} e^{x^{2}} d x
$$

7. Evaluate

$$
\int \frac{d y}{y^{2}-2 y+2}
$$

8. Estimate the minimum number of subintervals needed to approximate this integral with an error of magnitude less than 10^{-4} using Simpson's Rule.

$$
\int_{2}^{4} \frac{1}{(s-1)^{2}} d s
$$

