Mathematics 181D

March 27, 2008

Technology used: write on one side of each page.

• Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do any six (6) of the following problems

1. Evaluate

2. Use the method of partial fractions to evaluate

3. Use a substitution to change the following integral into one you can find in the integration table. Then evaluate the integral.

$$\int \frac{dt}{\tan\left(t\right)\sqrt{4-\sin^2\left(t\right)}}$$

4. Evaluate (be careful)

- (a) The infinite region bounded by the coordinate axes and the curve $y = -\ln(x)$ in the first quadrant is revolved about the x-axis to generate a solid. Express the volume of this solid as a sum of improper integrals each of which has exactly one impropriety which occurs at a limit of integration.
- (b) Use the integration table to evaluate at least one of these improper integrals.

6. Evaluate **one** of the following

(a)

$$\int \theta \, \cos\left(2\theta + 1\right) \, d\theta$$

(b)

$$\int x^3 e^{x^2} dx$$

 $\int \frac{dy}{y^2 - 2y + 2}$

7. Evaluate

 $\int \frac{x^3 + 2}{4 - r^2} dx$

 $\int \tan^5 \left(2t\right) \sec^4 \left(2t\right) \ dt$

$$\int \frac{dt}{\tan(t)\sqrt{4-\sin^2 t}}$$
$$\int_{-2}^0 \frac{dy}{(y+1)^{6/5}}$$

Exam 3

Name

Only

8. Estimate the minimum number of subintervals needed to approximate this integral with an error of magnitude less than 10^{-4} using Simpson's Rule.

$$\int_{2}^{4} \frac{1}{\left(s-1\right)^{2}} \, ds$$