November 13, 2008

Technology used:

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [12 points] Find the sum of the converging geometric series $\sum_{n=3}^{\infty} 4\left(\frac{2^{n=1}}{5^{n}}\right)$.
2. [10 points] Use the table of integrals to help evaluate one (1) of the following. Specify which formula(s) you use from the table.
3. $\int \frac{3 d z}{z[\ln z]^{2}\left([\ln z]^{2}+16\right)}$
4. $\int\left(e^{x}\right)^{3} \cos \left(e^{x}\right) d x$
5. [15 points each] Do two (2) of the following.
6. Use the definition of limit of a sequence (this requires you use " ε ") to prove that $\lim _{n \rightarrow \infty} \frac{n+2}{n+1}=1$.
7. Use the error bound formula $E_{n} \leq \frac{1}{180} M \frac{(b-a)^{5}}{5^{4}}$ to find the smallest value of n so that the error in using Simpson's Rule to approximate $\int_{1}^{5} \frac{1}{x} d x=\ln (5)$ is less than 10^{-6}.
8. Use integration, the Direct Comparison Test for improper integrals or the Limit Comparison Test for improper integrals to determine if the improper integral $\int_{0}^{1} \frac{1}{x(x+1)} d x$ converges or diverges. Why?
9. [12 points each] For four (4) of the following. Determine if the following the infinite series converge or diverge? Give reasons and show your work. Use both sides of this sheet.
10. $\sum_{k=1000}^{\infty} \frac{\ln (n)}{\ln (2 n)}$
11. $\sum_{n=1}^{\infty} \frac{[\ln n]^{5}}{n^{3}}$
12. $\sum_{n=1}^{\infty} \frac{3^{n-1}+2}{3^{n}}$
13. $\sum_{n=1}^{\infty} \frac{n+4}{3^{n-1}}$
14. $\sum_{n=1}^{\infty} \frac{n^{2}+10 n}{n^{4} \sqrt{n+2}}$
