October 16, 2008

Name

Technology used:
write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [2, 2, 6 points] Given the rational function below.
(a) Verify it is a proper fraction.
(b) Verify the denominator is a product of linear and irreducible quadratic factors.
(c) Write out the partial fraction decomposition. Do not solve for the constants.

$$
\frac{3 x^{12}-7 x^{8}+4 x^{5}+4 x^{2}-34 x+2008}{x^{4}(x-4)(x+7)^{2}\left(x^{2}+2 x+5\right)^{3}}
$$

2. [15 points each] Evaluate any two (2) of the following integrals by hand (no calculators).
(a) $\int \frac{2}{(x-1)\left(x^{2}+1\right)} d x$
(b) $\int \sin ^{5}(3 x) d x$
(c) $\int \frac{x^{2} d x}{\sqrt{1-9 x^{2}}}$
3. [8, 7 points] Do both of the following. A solid is obtained by rotating the region bounded by the curves $y=x+4$ and $y=(x-2)^{2}$ about the x-axis. Set up (but do not evaluate) the integral(s) appropriate for finding the volume using:
(a) Cross-sectional areas (Slicing).
(b) Cylindrical shells.
4. Solve the initial value problem

$$
\frac{d y}{d t}=\frac{2 y+2}{t^{2}+2 t}, \quad t>0, y>0, \text { and } y(1)=1
$$

5. [15 points] Find the length of the curve given by the parametrization $x=\cos ^{3}(t), \quad y=\sin ^{3}(t)$, $0 \leq t \leq \frac{\pi}{2}$. [Useful fact: $\sin ^{2}(t)+\cos ^{2}(t)=1$]
6. [15 points] Find the area of the surface generated by revolving the curve $y=\sqrt{2 x+1}, 0 \leq x \leq 3$ about the x-axis.
