February 02, 2012

Technology used:

Only

write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [15 points] Without using a calculator, evaluate the following indefinite integral

$$
\int\left(\frac{1}{|x| \sqrt{x^{2}-1}}+\frac{2}{x^{2}+1}-\frac{3}{\sqrt{1-x^{2}}}+\frac{4}{x}-e^{x}+\sin (x)-\sec ^{2}(x)+\sec (x) \tan (x)-x^{-5 / 3}\right) d x
$$

2. [15 points] If we use the partition points $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$ to partition the interval [2,5] into n subintervals of equal length
(a) What is the value of Δx in terms of the letter n ?
(b) Write the values of $x_{0}, x_{1}, x_{2}, x_{k}$, and x_{n} in terms of the letter n.
(c) Use sigma notation to write, in terms of the letter n, the Riemann sum for the function $f(x)=$ $2 \pi \sqrt{x}$ that uses the left endpoint of each subinterval as the value of c_{k}.
3. [15 points] Do ONE (1) of the following.
(a) If we partition the interval $[0,2]$ into n subintervals of equal width and select c_{k} as the right endpoint of each subinterval, then the corresponding Riemann sum for the function $f(x)=8-x^{3}$ is $\sum_{k=1}^{n}\left(8-\left(\frac{2 k}{n}\right)^{3}\right) \frac{2}{n}$.
Use the fact that $f(x)=8-x^{3}$ is monotone decreasing over the interval $[0,2]$ to find an error bound for this estimate. Include any pertinent figures and write your answer as a function of n (the number of subintervals).
(b) Express the following limit as a definite integral. Do not evaluate the limit. [Note that $\Delta x=\frac{5}{n}$.]

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left[9\left(2+\frac{5 k}{n}\right)^{5}-\left(2+\frac{5 k}{n}\right)^{2}+15\right] \frac{5}{n}
$$

4. [10 points] Do ONE (1) of the following.
(a) Find the derivative of $F(x)=\int_{x^{2}}^{x^{3}} \sqrt[3]{\cos (4 t)} d t$.
(b) Find a function f that satisfies the equation

$$
\sec (x)=\int_{2}^{x} \sqrt{4+f(t)} d t
$$

5. [15 points each] Use substitution to evaluate TWO (2) of the following indefinite integrals.
(a)

$$
\int \frac{4 x \sqrt{\arcsin \left(x^{2}\right)}}{\sqrt{1-\left(x^{2}\right)^{2}}} d x
$$

(b)

$$
\int_{0}^{\ln (9)} e^{\theta}\left(e^{\theta}-1\right)^{1 / 2} d \theta
$$

(c)

$$
\int \frac{3 \sin (x) \cos (x)}{\sqrt{1+3 \sin ^{2}(x)}} d x
$$

6. [15 points] Solve the initial value problem

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{(x-2)^{2}}, \quad y^{\prime}(3)=0, \quad y(3)=5
$$

