February 7, 2008
Name
Technology used:
Only
write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do both of these problems

1. Find the derivative of $F(x)=\int_{x}^{e^{x}} t^{2} d t$
(a) Using part 1 of the Fundamental Theorem of Calculus
(b) Using part 2 of the Fundamental Theorem of Calculus
2. Use substitution to evaluate two of the following indefinite integrals.
(a) $\int \frac{1}{t^{3}} \sin \left(3-\frac{1}{t^{2}}\right) d t$
(b) $\int \frac{\sqrt{3+\arctan (x)}}{1+x^{2}} d x$
(c) $\int \sqrt{1-x^{2}} d x$ start by using the substitution $x=\sin (\theta)$.

Do any four (4) of the following problems

1. (8,7 points) Solve the initial value problem

$$
\frac{d^{3} y}{d x^{3}}=x,\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=0}=2, \quad y^{\prime}(0)=3, \quad y(0)=1
$$

2. Without using a calculator, evaluate both of the following indefinite integrals
(a) $\int\left(7 \sec ^{2}(x)-\frac{2}{1+x^{2}}+\sec (x) \tan (x)+\frac{1}{x^{3 / 4}}\right) d x$
(b) $\int \frac{1}{y^{2}}\left(2 y^{3}+3 y^{2}+4 y+y^{1 / 2}\right) d y$
3. If we use the partition points $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$ to partition the interval [1,5] into n subintervals of equal length.
(a) What is the value of Δx in terms of the letter n ?
(b) Write the values of $x_{0}, x_{1}, x_{2}, x_{k}$, and x_{n} in terms of the letter n.
(c) Use sigma notation to write, in terms of the letter n, the Riemann sum for the function $f(x)=$ $x-x^{2}$ that uses the left endpoint of each subinterval as the value of c_{k}. Do not simplify this Riemann Sum.
4. If we partition the interval $[0,3]$ into n subintervals of equal width, then the Riemann sum for the function $f(x)=4 x-x^{3}$ that uses this partition and the right endpoint of each subinterval as the value of c_{k} is $\sum_{k=1}^{n}\left[4\left(0+\frac{3 k}{n}\right)-\left(0+\frac{3 k}{n}\right)^{3}\right] \frac{3}{n}$.
(a) Use limits to compute the value of $\int_{0}^{3}\left(4 x-x^{3}\right) d x$. [No credit if you use the Fundamental Theorem of Calculus.]
Useful facts: $\sum_{k=1}^{n} k=\frac{1}{2} n(n+1), \quad \sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.
5. Given the function $f(x)=\sqrt{x^{2}+1}$ with domain the interval $[0,5]$. Write a Riemann sum for f using a partition P that divides $[0,5]$ into 3 subintervals and where $\|P\|=2$. Be sure to specify the partition points of P as well as writing out the Riemann Sum without using sigma notation.
6. Suppose that f and g are integrable functions and that $\int_{a}^{b}(3 f(x)-g(x)) d x=5$ and $\int_{a}^{b}(f(x)+g(x)) d x=$ 7. Use properties of definite integrals to find $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$.
