September 18, 2008

Name

Technology used:

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

1. [10 points] Do one (1) of the following.
2. (a) A point P in the first quadrant lies on the graph of the function $f(x)=\sqrt[3]{x}$. Express the x-coordinate of P as a function of the slope of the line joining P to the origin.
(b) If a composite $f \circ g$ is one-to-one, must g be one-to-one? Explain your answer.
3. [15 points] Rewrite the following sum as indicated.

$$
\sum_{k=4}^{101}(2 k-1)^{2}=\sum_{j=15}
$$

3. [15 points] Do one (1) of the following. Show your work.
4. (a) Evaluate $\int \frac{1}{t^{3}}\left(t^{2}-3 t^{5}+t^{1 / 2}+5 t^{3} \sec ^{2}(t)+6 t^{3} \sec (t) \tan (t)+\frac{t^{3}}{\sqrt{1-t^{2}}}\right) d t$
(b) By differentiating the right hand side, verify the formula $\int \frac{\arctan (x)}{x^{2}} d x=\ln (x)-\frac{1}{2} \ln \left(1+x^{2}\right)-$ $\frac{\arctan (x)}{x}+C$
5. [8,7 points] The following is a Riemann sum for a function f with domain an interval $[a, b]$. [Do NOT simplify this sum.]

$$
\sum_{k=1}^{n}\left[3\left(5+\frac{6 k}{n}\right)^{7}-\left(5+\frac{6 k}{n}\right)^{2}+6\right] \frac{6}{n}
$$

1. (a) i. What is this specific $f(x)$?
ii. What is the specific interval $[a, b]$?
2. [15 points] Find the derivative of $G(x)=\int_{x^{4}}^{x} e^{t^{2}} d t$ using part 1 of the Fundamental Theorem of Calculus.
3. [15 points each $]$ Do both of the following.
4. (a) Evaluate $\int(2 t+1+2 \cos (2 t+1)) d t$
(b) Evaluate $\int \frac{(\ln (x+1))^{2}}{x+1} d x$
