May 11, 2007

Technology used:

D. ...

- Be sure to include in-line citations every time you use technology.
- Only write on one side of each page.
- When given a choice, specify which problem(s) you wish graded.

Exam 5

Do any six (6) of the following problems (15 points each)

- 1. Replace the polar equation below by an equivalent Cartesian equation and the Cartesian equation below by an equivalent polar equation.
 - (a) $\cos^2 \theta = \sin^2 \theta$
 - (b) $(x-5)^2 + (y+2)^2 = 29$
- 2. Identify the symmetries of the curve $r^2 = 9 \sin (3\theta)$ and make a careful sketch using a table (A sketch with no supporting table will get zero credit).
- 3. Consider the graph of $r = 1 + 2\sin(\theta)$.
 - (a) Find all values of θ between 0 and 2π for which the graph passes through the origin.
 - (b) Compute the slope of the curve at **one** of these points $[r, \theta]$.
 - (c) Sketch the curve along with the tangent line whose slope you have found.
- 4. Find the area of the region inside the lemniscate $r^2 = 6 \cos(2\theta)$ and outside the circle $r = \sqrt{3}$.
- 5. Find the length of the curve given by the polar coordinate equation $r = 8 \sin^3(\theta/3), 0 \le \theta \le \pi/4$.
- 6. The area of the region inside the cardioid curve $r = 1 + \cos \theta$ and outside the circle $r = \cos \theta$ is **not** $\frac{1}{2} \int_0^{2\pi} \left[(1 + \cos \theta)^2 \cos^2 \theta \right] d\theta = \pi.$
 - (a) Explain why this is not the area.
 - (b) Write a definite integral that specifies the actual area but **do not evaluate** that integral.
- 7. Can anything be said about the relative lengths of the curves $r = f(\theta)$, $\alpha \le \theta \le \beta$ and $r = 2f(\theta)$, $\alpha \le \theta \le \beta$? Explain.
- 8. Use Riemann Sums to give a detailed derivation of the formula, $A = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 d\theta$, for the area bounded by the polar curve $r = f(\theta)$, $\alpha \le \theta \le \beta$.

Spring 2007

Exam 5/Final

Name

Directions:

Cumulative Final Examination

Section One (15 points each): Do any two (2) of the following

I.1. Evaluate the following limit by interpreting it as the limit of Riemann sums for a particular definite integral and then evaluating that integral.

$$\lim_{n \to \infty} \left(e^{1/n} + e^{2/n} + \dots + e^{n/n} \right) \frac{1}{n}$$

I.2. Evaluate

$$\int_0^{\pi/2} \frac{3\sin(x)\cos(x)}{\sqrt{1+3\sin^2(x)}} \, dx$$

I.3.

Find
$$\frac{dy}{dx}$$
 if $y = \int_{\arctan(x)}^{\pi/4} e^{\sqrt{t}} dt$

Section Two (15 points each): Do any two(2) of the following

II.1. Do **one** (1) of these volume problems.

- (a) A round hole of radius $\sqrt{3}$ ft is bored through the center of a solid sphere of radius 2 ft. Find the volume of material removed from the sphere.
- (b) A solid is generated by revolving about the x-axis the region bounded by the graph of the positive continuous function y = f(x), the x-axis, and the fixed line x = a, and the variable line x = b, b > a. The volume of this solid for every such b is $b^2 ab$. Find f(x).
- II.2. Find the area of the surface generated by revolving the curve $x = \sqrt{4y y^2}$, $1 \le y \le 2$ about the y-axis.
- II.3. Set up, but do not evaluate, the integrals for M, M_y , and M_x needed to find the center of mass of a thin, flat plate covering the region enclosed by the parabola $y = x^2$ and the line y = 2x if the density function is $\delta(x) = 1 + x$. Use vertical strips.

Section Three (15 points each): Do any two (2)of the following

- III.1. Evaluate $\int \frac{v+3}{v^3-4v} dv$.
- III.2. Evaluate $\int \frac{\sin(5t) dt}{1 + [\cos(5t)]^2}$.
- III.3. Does this improper integral converge or diverge? Why?

$$\int_0^\infty \frac{1}{x^2 \left(1 + e^x\right)} dx$$

Section Four (10 points): Do any one (1) of the following

- IV.1. Use a comparison test to prove: If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are divergent series of nonnegative numbers, then $\sum_{n=1}^{\infty} a_n b_n$ must also diverge.
- IV.2. Use a comparison test to prove: If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of nonnegative numbers, then $\sum_{n=1}^{\infty} a_n b_n$ must also converge.