Exam 4

April 24, 2007

Name

Technology used: \qquad Directions:

- Be sure to include in-line citations every time you use technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page. When given a choice, specify which problem(s) you wish graded.

The Problems

1. [15 points] Find the exact sum of one (1) of the following converging series.
(a) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$ [Use partial fractions.]
(b) $\sum_{n=5}^{\infty} 3\left(\frac{1}{4}\right)^{n-1}$ [This geometric series in not in standard form.]
2. [10 points each] Determine the divergence or convergence of any four (4) of the following infinite series. State the test you use and show all necessary work.
(a) $\sum_{n=1}^{\infty}\left(1+\frac{7}{n}\right)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}-1}$
(c)

$$
\sum_{n=1}^{\infty} \frac{1}{1+2^{2}+3^{2}+\cdots+n^{2}}
$$

(d) [Be careful with the factorials.]

$$
\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}
$$

(e) [If this series converges, determine if it does so absolutely or conditionally.]

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{1+\sqrt{n}}
$$

3. Do any three (3) of the following.
(a) Find the radius and interval of convergence for the following series. For what values of x does the series converge absolutely and for what values conditionally?

$$
\sum_{n=0}^{\infty}(-2)^{n}(n+1)(x-1)^{n}
$$

(b) Find the Taylor series generated by the function $f(x)=x^{4}+x^{2}+1$ at $a=-2$.
(c) Find a polynomial that will approximate the function $F(x)$ given below throughout the interval $[0,1]$ with an error of magnitude less than 10^{-6}.

$$
F(x)=\int_{0}^{x} t^{2} e^{-t^{2}} d t
$$

(d) Use the binomial series and the fact that $\frac{d}{d x}[\arcsin (x)]=\left(1-x^{2}\right)^{-\frac{1}{2}}$ to generate the first four non-zero terms of the Taylor series for $\arcsin (x)$. What is the radius of convergence?

