Exam 3
March 27, 2007
Name

Technology used: Directions:

- Be sure to include in-line citations every time you use technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page. When given a choice, specify which problem(s) you wish graded.

The Problems

1. (10 points) Express the integrand of the following integral as a sum of partial fractions with undetermined coefficients. Do not solve for the coefficients or evaluate the integrals.

$$
\int \frac{x^{9}-6 x^{5}+7}{x(x+3)^{4}\left(x^{2}+4\right)^{2}\left(x^{2}+x+1\right)^{2}} d x
$$

2. [15 points each] Do two (2) of the following three (3) problems about integrals.
(a) Evaluate the integral

$$
\int \frac{v^{2} d v}{\left(1-v^{2}\right)^{5 / 2}}
$$

(b) Find the volume of the solid obtained by revolving the region bounded by $y=\frac{3}{\sqrt{3 x-x^{2}}}, 0.5 \leq$ $x \leq 2.5$ about the x-axis.
(c) Make a substitution first and then evaluate the integral

$$
\int \frac{e^{4 t}+2 e^{2 t}-e^{t}}{e^{2 t}+1} d t
$$

3. [15 points] Estimate the minimum number of subintervals needed to approximate $\int_{0}^{1} \sin (x+1) d x$ with an error of magnitude less than 10^{-5} using Simpson's Rule. The error bound formula is $\left|E_{S}\right| \leq$ $\frac{M(b-a)^{5}}{180 n^{4}}$.
4. [15 points] Do one (1) of the following two (2) problems.
(a) Determine if the following integral represents a number. If it does, find it. If it does not, explain why.

$$
\int_{-2}^{3} \frac{1}{(x+1)^{2}} d x
$$

(b) Write the following integral (which has multiple improprieties) as the sum of improper integrals each of which has exactly one impropriety which occurs at a limit of integration. Evaluate any one of these integrals.

$$
\int_{-2}^{\infty} \frac{1}{x(x-4)} d x
$$

5. [8, 7 points] Explain whether the following infinite sequences converge or diverge and determine, with explanation, the limit of any that converge.
(a) $a_{n}=3+2(-1)^{n}$
(b) $b_{n}=\frac{4 n^{4}+3 n}{2 n^{4}+1000 n^{3}}$
6. [15 points] Write out the first 5 terms of the sequence of partial sums of the infinite series $\sum_{k=1}^{\infty}(-1)^{n} \frac{1}{n(n+1)}$.
