November 20, 2007

Technology used:

Directions: Be sure to include in-line citations every time you use technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page.

Evaluate each integral in this exam BY HAND unless told otherwise.

Required Problem (10 points) Use the definition of limit of a sequence (this requires you use " ε ") to prove that $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$.

Do any three (2) of the following.

1. (15 points) Find the smallest value of n so that the error in using Simpson's Rule to approximate $\int_{1}^{3} \frac{1}{x} d x=\ln (3)$ is less than 10^{-3}.
2. (15 points) Evaluate the following improper integral.

$$
\int_{0}^{1} \frac{1}{\sqrt{x}(x+1)} d x
$$

3. (15 points) How many integrals with a single impropriety at a limit of integration are required to evaluate $\int_{-\infty}^{\infty} \frac{x}{(x-1)(x+4)} d x$? Give reasons for your answer.

Do any three (3) of the following

1. (20 points) Determine whether the infinite series $\frac{1}{3}+\frac{2}{7}+\frac{3}{11}+\frac{4}{15}+\frac{5}{19}+\cdots$ converges or diverges. [Hint: First write the series using " \sum " notation.]
2. (20 points) Do one (1) of the following.
(a) Find the sum of this convergent geometric series. $\sum_{n=3}^{\infty} \frac{1}{11}\left(-\frac{7}{9}\right)^{n-2}$. Do not give the answer in decimal form.
(b) Find the sum of the telescoping series $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$.
3. (20 points) Explain, briefly and in your own words,
(a) Why is it true that if $\sum_{n=1}^{\infty} a_{n}$ is a divergent series of positive numbers then there is also a divergent series $\sum_{n=1}^{\infty} b_{n}$ of positive numbers with $b_{n}<a_{n}$ for every n ?
(b) Is there a "smallest" divergent series of positive numbers?
4. (20 points) Select two (2) of the following infinite series and determine if they converge or diverge. Indicate which test you are using and show all work justifying your conclusion.
(a) $\sum_{n=2}^{\infty} \frac{1}{[\ln (n)]^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{n^{2}+1}$
(c) $\sum_{n=2}^{\infty} \frac{[\ln (n)]^{2}}{n^{2}}$
