October 9, 2007
Name

Technology used:
Directions:

- Be sure to include in-line citations every time you use technology.
- Include a careful sketch of any graph obtained by technology in solving a problem.
- Only write on one side of each page.

Do all of the following problems

1. Evaluate any three (3) of the following.
(a) $\int \frac{1}{x^{2}} e^{1 / x} \sec \left(2+e^{1 / x}\right) \tan \left(2+e^{1 / x}\right) d x$
(b) $\int \frac{1}{x} \sin ^{2}(\ln (x)) d x$
(c) $\int_{\ln (4)}^{\ln (9)} e^{x / 2} d x$
(d) $\frac{d}{d x} \int_{e^{x^{2}}}^{2} \frac{1}{\sqrt{t}} d t$
2. The base of a solid is the region bounded by the graphs of $y=\sec (x), y=0, x=0$ and $x=\pi / 4$. The cross sections perpendicular to the x-axis are semicircles. Find the volume.
3. A solid of revolution is formed when the region bounded by the curves $x=y^{2}$ and $x=6-y$ is rotated about the line $y=4$. Use the method of cylindrical shells to find the volume.
4. Find the length of the parametrized curve $x=\frac{t^{3}}{6}+\frac{1}{2 t}, y=t$, from $t=2$ to $t=3$.
5. Solve the separable differentiable equation

$$
\sqrt{x} \frac{d y}{d x}=e^{y+\sqrt{x}}, x>0 .
$$

6. Do one of the following.
(a) A wire in the shape of a semicircle of radius 7 has a density function $\delta(\theta)=2 \sin (\theta) \frac{\mathrm{g}}{\mathrm{cm}}$ that varies with the parameter angle θ. Use our three step process to set up a definite integral whose numerical value is the total mass (measured in grams) of the wire. Do not evaluate the integral. Use the parametric equations $x=7 \cos (\theta), y=7 \sin (\theta), 0 \leq \theta \leq \pi$ where length is measured in centimeters.
(b) Empirical evidence indicates that the power dissipation in a hurricane is proportional to three things: the cube of the wind speed, the frictional drag from the surface area at the base of the hurricane and the surface air density. Assume that the wind velocity $V(r)$ depends only on the distance, r, from the center of the Hurricane and denote the outer radius of the hurricane by R, the surface drag coefficient by C_{d}, and the surface air density by ρ.Use this information and our three-step process to build a definite integral that represents the total power dissipation.
