Objectives for Exam \#5

To be well-prepared for Exam \#5, you should

- know the definition of an antiderivative of a function
- know all of the formulas for antiderivatives that come from the derivatives of standard functions
- understand summation notation $\left(\sum_{j=m}^{n} a_{j}\right)$
- know the meanings of R_{N}, L_{N}, and M_{N} for a function $f(x)$ with domain $[a, b]$ and how to express them using summation notation
- be able to compute the area bounded by a positive function and the x-axis by setting up an appropriate R_{N}, L_{N}, and M_{N} and directly evaluating the limit (i.e., without using the Fundamental Theorem of Calculus) of one of

$$
\lim _{N \rightarrow \infty} \Sigma_{1}^{N} R_{N}, \quad \lim _{N \rightarrow \infty} \Sigma_{1}^{N} L_{N}, \quad \lim _{N \rightarrow \infty} \Sigma_{1}^{N} M_{N}
$$

- know the definition of a general Riemann sum $R(f, P, C)$ and the meanings of $[a, b], f, P$, and C
- be able to use Riemann sums to develop an integral formula that computes some quantity (such as total charge on a wire as an integral of linear charge density or volume of a sphere as an integral of linear volume density)
- know the definition of a definite integral and what functions are guaranteed to be integrable
- be able to state both parts of the Fundamental Theorem of Calculus (FTC)
- be able to articulate why the formulas in both parts of the FTC are valid
- be able to use Part 1 of the FTC to evaluate various definite integrals and initial value problems
- understand the meaning of functions defined as integrals $\left(F(x)=\int_{a}^{x} f(t) d t\right)$ and how to evaluate them at points and take their derivatives
- understand how definite integrals of rates of change of a function give net change of the function
- know the difference between displacement and total distance travelled by a particle during an interval of time and how to compute both using definite integrals
- know the definition of marginal cost/revenue/profit and how they relate to total cost/revenue/profit
- know the definition of linear charge/mass/volume/area density and how to compute the total charge/mass/volume/area from the linear density function

