## Problems on Differentials - Solution to \#1

1. The volume $V$ of a right circular cylinder is related to the radius $r$ and height $h$ of the cylinder by $V=\pi r^{2} h$.
(a) Find the linear relation among the differentials $d V, d r$, and $d h$.

## Solution:

$$
\begin{aligned}
d V & =\frac{\partial f}{\partial r} d r+\frac{\partial f}{\partial h} d h \\
& =2 \pi r h d r+\pi r^{2} d h
\end{aligned}
$$

(b) Use your result from (a) to deduce a relation among percent changes in $d V, d r$, and $d h$.

Solution: The percent change in the volume $V$ is given by $\frac{d V}{V}$ and similarly for the other variables. Thus we have

$$
\begin{aligned}
\frac{d V}{V} & =\frac{2 \pi r h d r+\pi r^{2} d h}{V} \\
& =\frac{2 \pi r h d r+\pi r^{2} d h}{\pi r^{2} h} \\
& =2 \frac{d r}{r}+\frac{d h}{h}
\end{aligned}
$$

(c) If the height and the radius of a cylinder are each increased by $1 \%$, by what percent does the volume increase?
Solution: Using the result from part (b) we have

$$
\begin{aligned}
\frac{d V}{V} & =2 \frac{d r}{r}+\frac{d h}{h} \\
& =2(1)+1 \\
& =3 \text { (that is, } 3 \%
\end{aligned}
$$

(d) If the height of a cylinder is increased by $1 \%$, how much must the radius be changed to keep volume constant?
Solution: Keeping the volume constant means staying on the same level set which means $d V=0$ giving $\frac{d V}{V}=0$. Thus we seek $d r$ for which

$$
0=\frac{d V}{V}=2 \frac{d r}{r}+1
$$

This gives $\frac{d r}{r}=\frac{1}{2} \%$

