Set Basics

- Notation for standard sets of numbers: $\mathbf{C}, \mathbf{R}, \mathbf{Q}, \mathbf{Z}, \mathbf{N}$
- Standard operators on sets: $\in, \cup, \cap, \subseteq, \notin$
- "Set Builder" notation: \{Universal set | defining restriction\}

1. Example: The set of even integers: $\{n \in \mathbf{Z} \mid n=2 k$ and $k \in \mathbf{Z}\}$
2. Example: The set of Real-valued functions whose domain is the set of Real numbers and whose graph passes through the point $(2,5):\{f: \mathbf{R} \longrightarrow \mathbf{R} \mid f(2)=5\}$.

Logical Operators and their Truth Tables

1. Not: (negation):
2. And (Conjunction): \wedge
3. Or: (Disjunction): V
4. Conditional (Implication): \Longrightarrow
5. Equivalence (If and only if): $\Longleftrightarrow \quad(\equiv)$

Tautologies / Contradictions

1. $p \wedge \sim p$
2. $p \vee \sim p$
3. $\sim \sim p \Longleftrightarrow p$
4. $(P \wedge(P \Rightarrow Q)) \Rightarrow Q$
5. $(p \vee q) \Longleftrightarrow(\sim p) \wedge(\sim q)$
6. $(p \wedge q) \Longleftrightarrow\left({ }^{\sim} p\right) \vee\left({ }^{\sim} q\right)$
7. $(p \Longrightarrow q) \Longleftrightarrow(\sim q) \Longrightarrow(\sim p) \quad$ contrapositive
8. $(p \Longrightarrow q) \Longleftrightarrow(\sim p) \vee q$
9. $\left((P \wedge \sim Q) \Rightarrow\left(R \wedge^{\sim} R\right)\right) \Longleftrightarrow(P \Rightarrow Q)$
10. $((p \Longrightarrow q) \Longrightarrow(r \Longrightarrow s)) \Longleftrightarrow((p \Longrightarrow q) \wedge r) \Longrightarrow s$

Quantifiers

Universal: \forall Example: $\forall x \in \mathbf{R} \quad x^{2}+1>0$ is a true statement
Existential: \exists Example: There is an integer solution to $x^{2}+5 x+6=0$ is a true statement. $(x=-2)$
Negation of quantifiers $\quad{ }^{\sim} \exists x(p(x))$ means $\forall x^{\sim} p(x)$

Proof Methods

Direct Proof of $H \Longrightarrow C$ or $H \Longrightarrow C_{1} \wedge C_{2}$

1. Start with the (conjoined) hypotheses of H
2. Use nothing but logical steps See below.
3. Deduce C. (Deduce each of the C_{i})

Use of the Contrapositive to prove $H \Longrightarrow C$ Uses the tautology $(H \Longrightarrow C) \Longleftrightarrow(\sim C) \Longrightarrow$ $(\sim H)$

1. Start with (conjoined) statements of $\sim C$
2. Use nothing but logical steps
3. Deduce $\sim H$

Proof by Contradiction of $H \Longrightarrow C$ Uses Tautology $(((H \wedge(\sim C))) \Longrightarrow(D \wedge(\sim D))) \Longrightarrow C$

1. Start with $(\sim C)$
2. Use H and nothing but logical steps to get $(D \wedge(\sim D))$
3. Deduce $(\sim \sim C)$

How to deal with conjunctions and disjunctions
Disjoined Hypotheses $H_{1} \vee H_{2} \Longrightarrow C$ Uses the Tautology ...

1. Do it by cases: Prove the 2 individual implications $H_{i} \Longrightarrow C$

Disjoined Conclusions $H \Longrightarrow C_{1} \vee C_{2}$ Uses the Tautology $\left[H \Longrightarrow\left(C_{1} \vee C_{2}\right)\right] \Longleftrightarrow\left[\left(H \wedge \sim C_{1}\right) \Longrightarrow C_{2}\right]$

1. Start with C and the negation of all but one C_{i}
2. Deduce the last C.

How to prove Universal statements $\forall x(p(x) \Longrightarrow q(x))$

1. Start with an arbitrary element x in the universal set X
2. Show that, using only the properties of being in $X \quad p(x) \Longrightarrow q(x)$
3. Example: If $x>1$ then $x^{2}>x$.

Proof: Let x be an arbitrary number bigger than 1 .
How to prove Existential Statements $\exists x p(x)$

1. Best approach is to actually exhibit an instance of x.
2. Or do a proof by contradiction.

Forward-Backward method for doing proofs

Basic (Named) Rules of Inference

1. Modus Ponens (mode that affirms)(mode that affirms by affirming) $\quad((p \Longrightarrow q) \wedge p) \Longrightarrow q$
2. Syllogism $\quad((p \Longrightarrow q) \wedge(q \Longrightarrow r)) \Longrightarrow(p \Longrightarrow r)$
3. Contrapositive $\quad(p \Longrightarrow q) \Longleftrightarrow((\sim q) \Longrightarrow(\sim p))$
(a) converse, obverse
4. Modus Tollens (mode that denies)("the way that denies by denying") $\quad((p \Longrightarrow q) \wedge(\sim q)) \Longrightarrow(\sim p)$
5. Contradiction $\quad(((p \wedge(\sim q))) \Longrightarrow(r \wedge(\sim r))) \Longrightarrow q$
