Set Basics

- Notation for standard sets of numbers: C, R, Q, Z, N
- Standard operators on sets: \in , \cup , \cap , \subseteq , \notin
- "Set Builder" notation: {Universal set | defining restriction}
 - 1. **Example:** The set of even integers: $\{n \in \mathbf{Z} \mid n = 2k \text{ and } k \in \mathbf{Z}\}$
 - 2. **Example:** The set of Real-valued functions whose domain is the set of Real numbers and whose graph passes through the point (2,5): $\{f: \mathbf{R} \longrightarrow \mathbf{R} \mid f(2) = 5\}$.

Logical Operators and their Truth Tables

- 1. **Not:** (negation): ~
- 2. And (Conjunction): \wedge
- 3. **Or:** (Disjunction): \vee
- 4. Conditional (Implication): \Longrightarrow
- 5. Equivalence (If and only if): \iff (\equiv)

Tautologies / Contradictions

- 1. $p \land \sim p$
- 2. $p \lor \sim p$
- $3. \sim p \iff p$
- 4. $(P \land (P \Rightarrow Q)) \Rightarrow Q$
- 5. $(p \lor q) \iff (\sim p) \land (\sim q)$
- 6. $(p \land q) \iff (\tilde{p}) \lor (\tilde{q})$
- 7. $(p \Longrightarrow q) \Longleftrightarrow (\sim q) \Longrightarrow (\sim p)$ contrapositive
- 8. $(p \Longrightarrow q) \Longleftrightarrow (\sim p) \lor q$
- 9. $((P \wedge \tilde{Q}) \Rightarrow (R \wedge \tilde{R})) \iff (P \Rightarrow Q)$
- 10. $((p \Longrightarrow q) \Longrightarrow (r \Longrightarrow s)) \iff ((p \Longrightarrow q) \land r) \Longrightarrow s$

Quantifiers

Universal: \forall Example: $\forall x \in \mathbf{R}$ $x^2 + 1 > 0$ is a true statement

Existential: \exists **Example:** There is an integer solution to $x^2 + 5x + 6 = 0$ is a true statement. (x = -2)

Negation of quantifiers $\exists x (p(x)) \text{ means } \forall x \tilde{p}(x)$

Proof Methods

Direct Proof of $H \Longrightarrow C$ **or** $H \Longrightarrow C_1 \wedge C_2$

- 1. Start with the (conjoined) hypotheses of H
- 2. Use nothing but logical steps See below.
- 3. Deduce C. (Deduce each of the C_i)

Use of the Contrapositive to prove $H\Longrightarrow C$ Uses the tautology $(H\Longrightarrow C)\Longleftrightarrow (\sim C)\Longrightarrow (\sim H)$

- 1. Start with (conjoined) statements of $\sim C$
- 2. Use nothing but logical steps
- 3. Deduce $\sim H$

Proof by Contradiction of $H \Longrightarrow C$ Uses Tautology $(((H \land (\sim C))) \Longrightarrow (D \land (\sim D))) \Longrightarrow C$

- 1. Start with $(\sim C)$
- 2. Use H and nothing but logical steps to get $(D \wedge (\sim D))$
- 3. Deduce $(\sim \sim C)$

How to deal with conjunctions and disjunctions

Disjoined Hypotheses $H_1 \vee H_2 \Longrightarrow C$ Uses the Tautology ...

1. Do it by cases: Prove the 2 individual implications $H_i \Longrightarrow C$

 $\textbf{Disjoined Conclusions} \ \ H \Longrightarrow C_1 \vee C_2 \ \ \textbf{Uses the Tautology} \ \ [H \Longrightarrow (C_1 \vee C_2)] \Longleftrightarrow [(H \wedge \sim C_1) \Longrightarrow C_2]$

- 1. Start with C and the negation of all but one C_i
- 2. Deduce the last C.

How to prove Universal statements $\forall x \ (p(x) \Longrightarrow q(x))$

- 1. Start with an **arbitrary** element x in the universal set X
- 2. Show that, using only the properties of being in X $p(x) \Longrightarrow q(x)$
- 3. **Example:** If x > 1 then $x^2 > x$.

Proof: Let x be an arbitrary number bigger than 1.

How to prove Existential Statements $\exists x \ p(x)$

- 1. Best approach is to **actually exhibit** an instance of x.
- 2. Or do a proof by contradiction.

Forward-Backward method for doing proofs

Basic (Named) Rules of Inference

- 1. Modus Ponens (mode that affirms) (mode that affirms by affirming) $((p \Longrightarrow q) \land p) \Longrightarrow q$
- 2. Syllogism $((p \Longrightarrow q) \land (q \Longrightarrow r)) \Longrightarrow (p \Longrightarrow r)$
- 3. Contrapositive $(p \Longrightarrow q) \Longleftrightarrow ((\sim q) \Longrightarrow (\sim p))$
 - (a) converse, obverse
- 4. Modus Tollens (mode that denies) ("the way that denies by denying") $((p \Longrightarrow q) \land (\sim q)) \Longrightarrow (\sim p)$
- 5. Contradiction $(((p \land (\sim q))) \Longrightarrow (r \land (\sim r))) \Longrightarrow q$