October 21

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Mathematicians do not study objects, but relations among objects; they are indifferent to the replacement of objects by others as long as relations do not change. Matter is not important, only form interests them."

- Henri Poincaré

Problems

1. You Must Do This Problem Let $\tau=\left(a_{1}, a_{2}, \cdots, a_{k}\right)$ be a cycle of length k.
(a) Prove that if σ is any permutation, then $\sigma \tau \sigma^{-1}=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \cdots \sigma\left(a_{k}\right)\right)$.
(b) Let μ be a cycle of length k. Prove there is a permutation σ such that $\sigma \tau \sigma^{-1}=\mu$.
2. Do all three of the following. Prove that any element in S_{n} (where $n \geq 3$) can be written as a finite product of
(a) the transpositions $(12),(13), \cdots(1 n)$.
(b) the transpositions $(12),(23), \cdots,(n-1, n)$
(c) the two distinct cycles $(12),(12 \cdots n)$
3. Let $\sigma \in S_{X}$. For any $x, y \in X$, we say $x \sim y$ if there is an integer n such that $\sigma^{n}(x)=y$.
(a) Prove that \sim is an equivalence relation.
(b) Let $x \in X$ and $\sigma \in S_{X}$ and define the orbit of x under σ to be the set $\mathcal{O}_{x, \sigma}=\left\{\sigma^{n}(x): n \in \mathbb{Z}^{+}\right\}$. Prove that $\mathcal{O}_{x, \sigma}$ is the equivalence class of x under the equivalence relation \sim.
[Note that this gives us a way to use a group to partition a set. We will see much more about this later.]
(c) Let $X=1,2,3,4,5,6$ be the set of faces of a cube where, as viewed from a fixed location, $1,2,3,4,5,6$ denote the front, right, back, left, top, and bottom faces respectively. Compute the orbit of face 1 under the element $\alpha=(13)(24) \in S_{4}$
(d) Using the same set X as above, find all of the equivalence classes $\mathcal{O}_{x, \sigma}$ in X where $\sigma=(124) \in S_{4}$.
